Skip to content

Sobolev training in KFAC #342

@rbvh

Description

@rbvh

Hello, I'm trying to do Sobolev training, i.e. fitting function value + derivatives simultaneously, with KFAC. As far as I can understand, computing values + gradients requires two passes in JAX, and this seems to be causing issues with KFAC. Here is some sample code:

import math

import jax
import jax.numpy as jnp

import kfac_jax

def mlp(params, x):       
    for (weights, biases) in params[:-1]:
        x = jnp.dot(x, weights) + biases
        x = jax.nn.tanh(x)
    
    weights_last, biases_last = params[-1]
    x = jnp.dot(x, weights_last) + biases_last

    return x.squeeze()

def init_mlp(rng, dim, num_hidden_layers, hidden_size):
    params = []
    layer_sizes = [dim] + [hidden_size]*num_hidden_layers + [1]
                    
    for size_in, size_out in zip(layer_sizes[:-1], layer_sizes[1:]):
        rng, rng_weight = jax.random.split(rng)
        
        weight_lim = math.sqrt(6. / (size_in + size_out))
        weights = jax.random.uniform(rng_weight, (size_in, size_out), minval=-weight_lim, maxval=weight_lim)
        biases = jnp.zeros((size_out,))
        
        params.append((weights, biases))
        
    return params

def func(x):
    return jnp.exp(-jnp.sum(x))

sobolev_weight = 0.1
batch_size = 256
dim = 4

rng = jax.random.key(0)
rng, rng_sample, rng_dummy, rng_dummy_init = jax.random.split(rng, 4)
params = init_mlp(rng, 4, 4, 32)

def loss_fn(params, batch):
    x = batch
    
    # Prediction
    preds = jax.vmap(mlp, in_axes=(None, 0))(params, x)
    
    # Residuals
    funcs = jax.vmap(func)(x)
    
    if sobolev_weight is None:
        kfac_jax.register_squared_error_loss(prediction=preds, targets=funcs)
    
        return jnp.mean((preds - funcs)**2)
    
    # Sobolev loss
    else:
        # Gradients of the prediction
        grad_preds = jax.vmap(
            jax.grad(lambda x, params: mlp(params, x).squeeze()), 
            in_axes=(0 ,None)
        )(x, params)
        
        # Gradients of the residuals
        grad_funcs = jax.vmap(jax.grad(func))(x)
        
        cat_preds = jnp.concatenate([preds[:, None], grad_preds], axis=1)
        cat_funcs = jnp.concatenate([funcs[:, None], grad_funcs], axis=1)
        weights  = jnp.concatenate([jnp.ones((1,)), sobolev_weight * jnp.ones((dim,))])
        
        kfac_jax.register_squared_error_loss(
            prediction = cat_preds,
            targets = cat_funcs,
            weight = weights
        )
        
        return jnp.mean(
            jnp.sum(weights * (cat_preds - cat_funcs)**2, axis=-1)
        )

optimizer = kfac_jax.Optimizer(
    value_and_grad_func         = jax.value_and_grad(loss_fn),
    l2_reg                      = 0.0,
    value_func_has_aux          = False,
    value_func_has_state        = False,
    value_func_has_rng          = False,
    use_adaptive_learning_rate  = True,
    use_adaptive_momentum       = True,
    use_adaptive_damping        = True,
    initial_damping             = 1.0,
    multi_device                = False,
)

# initialize K-FAC state on a dummy batch
dummy_x = jax.random.uniform(rng_dummy, (batch_size, dim))
optimizer_state = optimizer.init(params, rng_dummy_init, dummy_x)

for _ in range(50):
    rng, rng_sample, rng_opt = jax.random.split(rng, 3)
    x = jax.random.uniform(rng_sample, (batch_size, dim))
    
    # Do an update
    params, optimizer_state, stats = optimizer.step(
        params = params,
        state = optimizer_state,
        rng = rng_opt,
        batch = x
    )
    
    loss_val = stats["loss"]
    
    print(loss_val)

This gives an error like this:

ValueError: Parameter Var(id=124146837841728):float32[4,32] has been registered to multiple tags: ['Auto[dense_tag_0]', 'Auto[dense_tag_5]'].

Is there anything I can do to make this work properly?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions