@@ -68,27 +68,26 @@ jobs:
6868 # with:
6969 # halt-dispatch-input: ${{ inputs.halt-for-connection }}
7070
71- - name : Create dot_dot_f32_f32_f32 .hlo
71+ - name : Create gpu_hlo_backend .hlo
7272 working-directory : xla
7373 run : |
74- cat << EOF > dot_dot_f32_f32_f32.hlo
75- HloModule dot_dot_f32_f32_f32
76- ENTRY main {
77- p_0 = f32[16,512,222264] parameter(0)
78- p_1 = f32[16,256,222264] parameter(1)
79- ROOT dot = f32[16,512,256] dot(p_0, p_1),
80- lhs_batch_dims={0},
81- lhs_contracting_dims={2},
82- rhs_batch_dims={0},
83- rhs_contracting_dims={2},
84- algorithm=dot_f32_f32_f32
74+ cat << EOF > gpu_hlo_backend.hlo
75+ HloModule module
76+ // CHECK: is_scheduled=true
77+
78+ ENTRY computation {
79+ p = f32[5000,6000]{1,0} parameter(0)
80+ e = f32[5000,6000]{1,0} sqrt(p)
81+ c = f32[6000,5000] transpose(p), dimensions={1,0}
82+ r = f32[300,20,5000] reshape(c)
83+ ROOT out = (f32[5000,6000], f32[300,20,5000]) tuple(e,r)
8584 }
8685 EOF
8786
8887 - name : Run specific HLO file
8988 working-directory : xla
9089 run : |
91- nvidia-smi --query-gpu=utilization.gpu --format=csv -l 1 > results/gpu_utilization_v2.log & ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --use_spmd_partitioning dot_dot_f32_f32_f32 .hlo &> results/dot_dot_f32_f32_f32 .log
90+ nvidia-smi --query-gpu=utilization.gpu --format=csv -l 1 > results/gpu_utilization_v2.log & ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --use_spmd_partitioning gpu_hlo_backend .hlo &> results/gpu_hlo_backend .log
9291
9392 - name : Wait For Connection
9493 uses : google-ml-infra/actions/ci_connection@main
@@ -101,7 +100,7 @@ jobs:
101100
102101 - name : Parse XLA logs
103102 working-directory : xla
104- run : python parse_xla_logs.py results/dot_dot_f32_f32_f32 .log
103+ run : python parse_xla_logs.py results/gpu_hlo_backend .log
105104
106105 - name : Upload Results
107106 uses : actions/upload-artifact@v4
0 commit comments