Skip to content

Commit dee2556

Browse files
Update benchmarks.yml
1 parent d3b58db commit dee2556

File tree

1 file changed

+28
-13
lines changed

1 file changed

+28
-13
lines changed

.github/workflows/benchmarks.yml

Lines changed: 28 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -82,27 +82,42 @@ jobs:
8282
working-directory: xla
8383
run: bazel build -c opt --config=cuda --dynamic_mode=off //xla/tools/multihost_hlo_runner:hlo_runner_main
8484

85-
- name: Create b284431534_transpose_convert_f32_s8.hlo
85+
- name: Create gemm_006f564ad71b327343de5f090e801883.hlo
8686
working-directory: xla
8787
run: |
88-
cat << EOF > b284431534_transpose_convert_f32_s8.hlo
89-
HloModule test, entry_computation_layout={(f32[1,4,32,192,384]{4,3,2,1,0})->s8[1,4,192,384,32]{4,3,2,1,0}}
90-
91-
fusion {
92-
param_0 = f32[1,4,32,192,384] parameter(0)
93-
transpose = f32[1,4,192,384,32] transpose(param_0), dimensions={0,1,3,4,2}
94-
ROOT convert = s8[1,4,192,384,32] convert(transpose)
88+
cat << EOF > gemm_006f564ad71b327343de5f090e801883.hlo
89+
Code panel - press c to focus line 1.
90+
HloModule gemm_fusion_dot.166, entry_computation_layout={(bf16[8,12,2048,2048]{3,2,1,0}, bf16[16384,128]{1,0}, bf16[128]{0})->bf16[8,12,2048,128]{3,2,1,0}}
91+
92+
%gemm_fusion_dot.166_computation.clone (parameter_0.167: bf16[8,12,2048,2048], parameter_1.167: bf16[16384,128], parameter_2.18: bf16[128]) -> bf16[8,12,2048,128] {
93+
%parameter_0.167 = bf16[8,12,2048,2048]{3,2,1,0} parameter(0)
94+
%bitcast.22615 = bf16[8,24576,2048]{2,1,0} bitcast(bf16[8,12,2048,2048]{3,2,1,0} %parameter_0.167)
95+
%parameter_1.167 = bf16[16384,128]{1,0} parameter(1)
96+
%parameter_2.18 = bf16[128]{0} parameter(2)
97+
%broadcast.9073 = bf16[16384,128]{1,0} broadcast(bf16[128]{0} %parameter_2.18), dimensions={1}, metadata={op_name="pjit(_wrapped_fn)/jit(main)/tarzan_lm.apply/tarzan_lm.decode_with_params/lm/transformer/x_layers_0/self_attention/value/mul" source_file="third_party/py/praxis/layers/quantization/operations.py" source_line=228}
98+
%multiply.7656 = bf16[16384,128]{1,0} multiply(bf16[16384,128]{1,0} %parameter_1.167, bf16[16384,128]{1,0} %broadcast.9073), metadata={op_name="pjit(_wrapped_fn)/jit(main)/tarzan_lm.apply/tarzan_lm.decode_with_params/lm/transformer/x_layers_0/self_attention/value/mul" source_file="third_party/py/praxis/layers/quantization/operations.py" source_line=228}
99+
%bitcast.22616 = bf16[8,2048,128]{2,1,0} bitcast(bf16[16384,128]{1,0} %multiply.7656)
100+
%dot.1454 = bf16[8,24576,128]{2,1,0} dot(bf16[8,24576,2048]{2,1,0} %bitcast.22615, bf16[8,2048,128]{2,1,0} %bitcast.22616), lhs_batch_dims={0}, lhs_contracting_dims={2}, rhs_batch_dims={0}, rhs_contracting_dims={1}, metadata={op_name="pjit(_wrapped_fn)/jit(main)/tarzan_lm.apply/tarzan_lm.decode_with_params/lm/transformer/x_layers_0/self_attention/self_attention._dot_atten/pv_einsum/BNTS,BSH->BNTH/dot_general[dimension_numbers=(((3,), (1,)), ((0,), (0,))) precision=None preferred_element_type=None]" source_file="third_party/py/praxis/layers/base_ops.py" source_line=28}
101+
ROOT %bitcast.22617 = bf16[8,12,2048,128]{3,2,1,0} bitcast(bf16[8,24576,128]{2,1,0} %dot.1454), metadata={op_name="pjit(_wrapped_fn)/jit(main)/tarzan_lm.apply/tarzan_lm.decode_with_params/lm/transformer/x_layers_0/self_attention/self_attention._dot_atten/transpose[permutation=(0, 2, 1, 3)]" source_file="third_party/py/praxis/layers/multi_query_attention.py" source_line=454}
95102
}
96-
97-
ENTRY main {
98-
param_0 = f32[1,4,32,192,384] parameter(0)
99-
ROOT fusion = s8[1,4,192,384,32] fusion(param_0), kind=kInput, calls=fusion
103+
104+
ENTRY %entry_computation (convert.8139: bf16[8,12,2048,2048], gemm_fusion_dot.163: bf16[16384,128], Arg_23.24: bf16[128]) -> bf16[8,12,2048,128] {
105+
%convert.8139 = bf16[8,12,2048,2048]{3,2,1,0} parameter(0)
106+
%gemm_fusion_dot.163 = bf16[16384,128]{1,0} parameter(1)
107+
%Arg_23.24 = bf16[128]{0} parameter(2)
108+
ROOT %micro_kernel = bf16[8,12,2048,128]{3,2,1,0} fusion(bf16[8,12,2048,2048]{3,2,1,0} %convert.8139, bf16[16384,128]{1,0} %gemm_fusion_dot.163, bf16[128]{0} %Arg_23.24), kind=kCustom, calls=%gemm_fusion_dot.166_computation.clone, metadata={op_name="pjit(_wrapped_fn)/jit(main)/tarzan_lm.apply/tarzan_lm.decode_with_params/lm/transformer/x_layers_0/self_attention/self_attention._dot_atten/pv_einsum/BNTS,BSH->BNTH/dot_general[dimension_numbers=(((3,), (1,)), ((0,), (0,))) precision=None preferred_element_type=None]" source_file="third_party/py/praxis/layers/base_ops.py" source_line=28}, backend_config={"operation_queue_id":"0","wait_on_operation_queues":[],"fusion_backend_config":{"kind":"__triton_gemm"},"force_earliest_schedule":false}
109+
} ROOT fusion = s8[1,4,192,384,32] fusion(param_0), kind=kInput, calls=fusion
100110
}
101111
EOF
102112
113+
- name: Wait For Connection
114+
uses: google-ml-infra/actions/ci_connection@main
115+
with:
116+
halt-dispatch-input: ${{ inputs.halt-for-connection }}
117+
103118
- name: Run specific HLO file
104119
working-directory: xla
105-
run: ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --use_spmd_partitioning b284431534_transpose_convert_f32_s8.hlo &> results/b284431534_transpose_convert_f32_s8.hlo.log
120+
run: ./bazel-bin/xla/tools/multihost_hlo_runner/hlo_runner_main --device_type=gpu --use_spmd_partitioning gemm_006f564ad71b327343de5f090e801883.hlo &> results/gemm_006f564ad71b327343de5f090e801883.hlo.log
106121

107122
# - name: Run HLO Module Benchmarks with GPU in xla/tests/fuzz
108123
# working-directory: xla

0 commit comments

Comments
 (0)