@@ -11,7 +11,7 @@ A ready-to-use TensorFlow environment with NVIDIA GPU support for VS Code. Desig
1111| ** GPU** | CUDA 12.5, cuDNN 9.1 |
1212| ** ML** | TensorFlow 2.16, Keras 3.3, PyTorch 2.10, Scikit-learn 1.4 |
1313| ** Python** | Python 3.10, NumPy 1.24, Pandas 2.2, Matplotlib 3.10 |
14- | ** Tools** | JupyterLab, TensorBoard (auto-starts on port 6006) |
14+ | ** Tools** | JupyterLab, TensorBoard |
1515
1616Based on [ NVIDIA's TensorFlow 24.06 container] ( https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/rel-24-06.html ) .
1717
@@ -24,7 +24,7 @@ tensorflow-GPU/
2424├── .devcontainer/
2525│ └── devcontainer.json # Dev container configuration
2626├── data/ # Store datasets here
27- ├── logs/ # TensorBoard logs (auto-watched)
27+ ├── logs/ # TensorBoard logs
2828├── models/ # Saved model files
2929├── notebooks/
3030│ ├── environment_test.ipynb # Verify your setup
@@ -77,7 +77,13 @@ Check your GPU's compute capability: [NVIDIA CUDA GPUs](https://developer.nvidia
7777
7878## TensorBoard
7979
80- TensorBoard starts automatically and is available at ** http://localhost:6006 ** . Place your logs in the ` logs/ ` directory.
80+ To launch TensorBoard:
81+
82+ 1 . Open the command palette (` Ctrl+Shift+P ` / ` Cmd+Shift+P ` )
83+ 2 . Run ** Python: Launch TensorBoard**
84+ 3 . Select the ` logs/ ` directory when prompted
85+
86+ TensorBoard will open in a new tab within VS Code. Place your training logs in the ` logs/ ` directory.
8187
8288## Adding Python rackages
8389
0 commit comments