forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_linalg.py
533 lines (482 loc) · 25.3 KB
/
test_linalg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import torch
import unittest
import itertools
from math import inf, nan, isnan
from torch.testing._internal.common_utils import \
(TestCase, run_tests, TEST_NUMPY)
from torch.testing._internal.common_device_type import \
(instantiate_device_type_tests, dtypes, skipCUDAIfNoMagma, skipCPUIfNoLapack)
from torch.testing._internal.jit_metaprogramming_utils import gen_script_fn_and_args
from torch.autograd import gradcheck
if TEST_NUMPY:
import numpy as np
class TestLinalg(TestCase):
exact_dtype = True
# TODO: test out variant
# Tests torch.ger, and its alias, torch.outer, vs. NumPy
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float)
def test_outer(self, device, dtype):
a = torch.randn(50, device=device, dtype=dtype)
b = torch.randn(50, device=device, dtype=dtype)
ops = (torch.ger, torch.Tensor.ger,
torch.outer, torch.Tensor.outer)
expected = np.outer(a.cpu().numpy(), b.cpu().numpy())
for op in ops:
actual = op(a, b)
self.assertEqual(actual, expected)
# Tests torch.det and its alias, torch.linalg.det, vs. NumPy
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.double)
def test_det(self, device, dtype):
tensors = (
torch.randn((2, 2), device=device, dtype=dtype),
torch.randn((129, 129), device=device, dtype=dtype),
torch.randn((3, 52, 52), device=device, dtype=dtype),
torch.randn((4, 2, 26, 26), device=device, dtype=dtype))
ops = (torch.det, torch.Tensor.det,
torch.linalg.det)
for t in tensors:
expected = np.linalg.det(t.cpu().numpy())
for op in ops:
actual = op(t)
self.assertEqual(actual, expected)
# NOTE: det requires a 2D+ tensor
t = torch.randn(1, device=device, dtype=dtype)
with self.assertRaises(IndexError):
op(t)
# This test confirms that torch.linalg.norm's dtype argument works
# as expected, according to the function's documentation
def test_norm_dtype(self, device):
def run_test_case(input_size, ord, keepdim, from_dtype, to_dtype, compare_dtype):
msg = (
f'input_size={input_size}, ord={ord}, keepdim={keepdim}, '
f'from_dtype={from_dtype}, to_dtype={to_dtype}')
input = torch.randn(*input_size, dtype=from_dtype, device=device)
result = torch.linalg.norm(input, ord, keepdim=keepdim, dtype=from_dtype)
self.assertEqual(result.dtype, from_dtype, msg=msg)
result_converted = torch.linalg.norm(input, ord, keepdim=keepdim, dtype=to_dtype)
self.assertEqual(result_converted.dtype, to_dtype, msg=msg)
self.assertEqual(result.to(compare_dtype), result_converted.to(compare_dtype), msg=msg)
result_out_converted = torch.empty_like(result_converted)
torch.linalg.norm(input, ord, keepdim=keepdim, dtype=to_dtype, out=result_out_converted)
self.assertEqual(result_out_converted.dtype, to_dtype, msg=msg)
self.assertEqual(result_converted, result_out_converted, msg=msg)
ord_vector = [0, 1, -1, 2, -2, 3, -3, 4.5, -4.5, inf, -inf, None]
ord_matrix = [1, -1, 2, -2, inf, -inf, None]
S = 10
test_cases = [
((S, ), ord_vector),
((S, S), ord_matrix),
]
for keepdim in [True, False]:
for input_size, ord_settings in test_cases:
for ord in ord_settings:
# float to double
run_test_case(input_size, ord, keepdim, torch.float, torch.double, torch.float)
# double to float
run_test_case(input_size, ord, keepdim, torch.double, torch.double, torch.float)
# Make sure that setting dtype != out.dtype raises an error
dtype_pairs = [
(torch.float, torch.double),
(torch.double, torch.float),
]
for keepdim in [True, False]:
for input_size, ord_settings in test_cases:
for ord in ord_settings:
for dtype, out_dtype in dtype_pairs:
input = torch.rand(*input_size)
result = torch.Tensor().to(out_dtype)
with self.assertRaisesRegex(RuntimeError, r'provided dtype must match dtype of result'):
torch.linalg.norm(input, ord=ord, keepdim=keepdim, dtype=dtype, out=result)
# TODO: Once dtype arg is supported in nuclear and frobenius norms, remove the following test
# and add 'nuc' and 'fro' to ord_matrix above
for ord in ['nuc', 'fro']:
input = torch.randn(10, 10, device=device)
with self.assertRaisesRegex(RuntimeError, f"ord=\'{ord}\' does not yet support the dtype argument"):
torch.linalg.norm(input, ord, dtype=torch.float)
# This test compares torch.linalg.norm and numpy.linalg.norm to ensure that
# their vector norm results match
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_vector(self, device, dtype):
def run_test_case(input, p, dim, keepdim):
result = torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
self.assertEqual(result, result_numpy, msg=msg)
result_out = torch.empty_like(result)
torch.linalg.norm(input, ord, dim, keepdim, out=result_out)
self.assertEqual(result, result_out, msg=msg)
ord_vector = [0, 1, -1, 2, -2, 3, -3, 4.5, -4.5, inf, -inf, None]
S = 10
test_cases = [
# input size, p settings, dim
((S, ), ord_vector, None),
((S, ), ord_vector, 0),
((S, S, S), ord_vector, 0),
((S, S, S), ord_vector, 1),
((S, S, S), ord_vector, 2),
((S, S, S), ord_vector, -1),
((S, S, S), ord_vector, -2),
]
L = 1_000_000
if dtype == torch.double:
test_cases.append(((L, ), ord_vector, None))
for keepdim in [True, False]:
for input_size, ord_settings, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_test_case(input, ord, dim, keepdim)
# This test compares torch.linalg.norm and numpy.linalg.norm to ensure that
# their matrix norm results match
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_matrix(self, device, dtype):
def run_test_case(input, p, dim, keepdim):
result = torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
self.assertEqual(result, result_numpy, msg=msg)
result_out = torch.empty_like(result)
torch.linalg.norm(input, ord, dim, keepdim, out=result_out)
self.assertEqual(result, result_out, msg=msg)
ord_matrix = [1, -1, 2, -2, inf, -inf, 'nuc', 'fro', None]
S = 10
test_cases = [
# input size, p settings, dim
((S, S), ord_matrix, None),
((S, S), ord_matrix, (0, 1)),
((S, S), ord_matrix, (1, 0)),
((S, S, S, S), ord_matrix, (2, 0)),
((S, S, S, S), ord_matrix, (-1, -2)),
((S, S, S, S), ord_matrix, (-1, -3)),
((S, S, S, S), ord_matrix, (-3, 2)),
]
L = 1_000
if dtype == torch.double:
test_cases.append(((L, L), ord_matrix, None))
for keepdim in [True, False]:
for input_size, ord_settings, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_test_case(input, ord, dim, keepdim)
# Test autograd and jit functionality for linalg functions.
# TODO: Once support for linalg functions is added to method_tests in common_methods_invocations.py,
# the `test_cases` entries below should be moved there. These entries are in a similar format,
# so they should work with minimal changes.
@dtypes(torch.float, torch.double)
def test_autograd_and_jit(self, device, dtype):
torch.manual_seed(0)
S = 10
NO_ARGS = None # NOTE: refer to common_methods_invocations.py if you need this feature
test_cases = [
# NOTE: Not all the features from common_methods_invocations.py are functional here, since this
# is only a temporary solution.
# (
# method name,
# input size/constructing fn,
# args (tuple represents shape of a tensor arg),
# test variant name (will be used at test name suffix), // optional
# (should_check_autodiff[bool], nonfusible_nodes, fusible_nodes) for autodiff, // optional
# indices for possible dim arg, // optional
# fn mapping output to part that should be gradcheck'ed, // optional
# kwargs // optional
# )
('norm', (S,), (), 'default_1d'),
('norm', (S, S), (), 'default_2d'),
('norm', (S, S, S), (), 'default_3d'),
('norm', (S,), (inf,), 'vector_inf'),
('norm', (S,), (3.5,), 'vector_3_5'),
('norm', (S,), (2,), 'vector_2'),
('norm', (S,), (1,), 'vector_1'),
('norm', (S,), (0,), 'vector_0'),
('norm', (S,), (-inf,), 'vector_neg_inf'),
('norm', (S,), (-3.5,), 'vector_neg_3_5'),
('norm', (S,), (2,), 'vector_neg_2'),
('norm', (S,), (1,), 'vector_neg_1'),
('norm', (S, S), (inf,), 'matrix_inf'),
('norm', (S, S), (2,), 'matrix_2', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), (1,), 'matrix_1'),
('norm', (S, S), (-inf,), 'matrix_neg_inf'),
('norm', (S, S), (-2,), 'matrix_neg_2', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), (-1,), 'matrix_neg_1'),
('norm', (S, S), ('fro',), 'fro'),
('norm', (S, S), ('fro', [0, 1]), 'fro_dim'),
('norm', (S, S), ('nuc',), 'nuc', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
('norm', (S, S), ('nuc', [0, 1]), 'nuc_dim', (), NO_ARGS, [skipCPUIfNoLapack, skipCUDAIfNoMagma]),
]
for test_case in test_cases:
func_name = test_case[0]
func = getattr(torch.linalg, func_name)
input_size = test_case[1]
args = list(test_case[2])
test_case_name = test_case[3] if len(test_case) >= 4 else None
mapping_funcs = list(test_case[6]) if len(test_case) >= 7 else None
# Skip a test if a decorator tells us to
if mapping_funcs is not None:
def decorated_func(self, device, dtype):
pass
for mapping_func in mapping_funcs:
decorated_func = mapping_func(decorated_func)
try:
decorated_func(self, device, dtype)
except unittest.SkipTest:
continue
msg = f'function name: {func_name}, case name: {test_case_name}'
# Test JIT
input = torch.randn(*input_size, dtype=dtype, device=device)
input_script = input.clone().detach()
script_method, tensors = gen_script_fn_and_args("linalg.norm", "functional", input_script, *args)
self.assertEqual(
func(input, *args),
script_method(input_script),
msg=msg)
# Test autograd
# gradcheck is only designed to work with torch.double inputs
if dtype == torch.double:
input = torch.randn(*input_size, dtype=dtype, device=device, requires_grad=True)
def run_func(input):
return func(input, *args)
self.assertTrue(gradcheck(run_func, input), msg=msg)
# This test calls torch.linalg.norm and numpy.linalg.norm with illegal arguments
# to ensure that they both throw errors
@unittest.skipIf(not TEST_NUMPY, "NumPy not found")
@dtypes(torch.float, torch.double)
def test_norm_errors(self, device, dtype):
def run_error_test_case(input, ord, dim, keepdim, error_type, error_regex):
test_case_info = (
f'test case input.size()={input.size()}, ord={ord}, dim={dim}, '
f'keepdim={keepdim}, dtype={dtype}')
with self.assertRaisesRegex(error_type, error_regex, msg=test_case_info):
torch.linalg.norm(input, ord, dim, keepdim)
input_numpy = input.cpu().numpy()
msg = f'numpy does not raise error but pytorch does, for case "{test_case_info}"'
with self.assertRaises(Exception, msg=test_case_info):
np.linalg.norm(input_numpy, ord, dim, keepdim)
S = 10
error_test_cases = [
# input size, p settings, dim, error type, error regex
((S, ), ['fro'], None, RuntimeError, r'order "fro" can only be used if either len\(dim\) == 2'),
((S, ), ['nuc'], None, RuntimeError, r'order "nuc" can only be used if either len\(dim\) == 2'),
((S, S), [3.5], None, RuntimeError, r'Order 3.5 not supported for matrix norm'),
((S, S), [0], None, RuntimeError, r'Order 0 not supported for matrix norm'),
((S, S), ['nuc'], 0, RuntimeError, r'order "nuc" can only be used if either len\(dim\) == 2'),
((S, S), ['fro'], 0, RuntimeError, r'order "fro" can only be used if either len\(dim\) == 2'),
((S, S), ['nuc'], (0, 0), RuntimeError, r'duplicate or invalid dimensions'),
((S, S), ['fro', 0], (0, 0), RuntimeError, r'Expected dims to be different'),
((S, S), ['fro', 'nuc', 0], (0, 4), IndexError, r'Dimension out of range'),
((S, ), [0], (4, ), IndexError, r'Dimension out of range'),
((S, ), [None], (0, 0), RuntimeError, r'Expected dims to be different, got this instead'),
((S, S, S), [1], (0, 1, 2), RuntimeError, r"'dim' must specify 1 or 2 dimensions"),
((S, S, S), [1], None, RuntimeError, r"'dim' must specify 1 or 2 dimensions"),
((S, S), ['garbage'], (0, 1), RuntimeError, r'Invalid norm order: garbage'),
]
for keepdim in [True, False]:
for input_size, ord_settings, dim, error_type, error_regex in error_test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_settings:
run_error_test_case(input, ord, dim, keepdim, error_type, error_regex)
# Test complex number inputs for linalg.norm. Some cases are not supported yet, so
# this test also verifies that those cases raise an error.
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@dtypes(torch.cfloat, torch.cdouble)
def test_norm_complex(self, device, dtype):
def gen_error_message(input_size, ord, keepdim, dim=None):
return "complex norm failed for input size %s, ord=%s, keepdim=%s, dim=%s" % (
input_size, ord, keepdim, dim)
if self.device_type == 'cpu':
supported_vector_ords = [0, 1, 3, inf, -1, -2, -3, -inf]
supported_matrix_ords = ['nuc', 1, 2, inf, -1, -2, -inf]
unsupported_vector_ords = [
(2, r'norm with p=2 not supported for complex tensors'),
(None, r'norm with p=2 not supported for complex tensors'),
]
unsupported_matrix_ords = [
('fro', r'frobenius norm not supported for complex tensors'),
(None, r'norm with p=2 not supported for complex tensors'),
]
elif self.device_type == 'cuda':
supported_vector_ords = [inf, -inf]
supported_matrix_ords = [1, inf, -1, -inf]
unsupported_vector_ords = [
(0, r'norm_cuda" not implemented for \'Complex'),
(1, r'norm_cuda" not implemented for \'Complex'),
(2, r'norm with p=2 not supported for complex tensors'),
(-1, r'norm_cuda" not implemented for \'Complex'),
(-2, r'norm_cuda" not implemented for \'Complex'),
(None, r'norm with p=2 not supported for complex tensors'),
]
unsupported_matrix_ords = [
(None, r'norm with p=2 not supported for complex tensors'),
('fro', r'frobenius norm not supported for complex tensors'),
(2, r'"svd_cuda" not implemented for \'Complex'),
(-2, r'"svd_cuda" not implemented for \'Complex'),
('nuc', r'"svd_cuda" not implemented for \'Complex'),
]
# Test supported ords
for keepdim in [False, True]:
# vector norm
x = torch.randn(25, device=device, dtype=dtype)
xn = x.cpu().numpy()
for ord in supported_vector_ords:
res = torch.linalg.norm(x, ord, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, ord, keepdims=keepdim)
msg = gen_error_message(x.size(), ord, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# matrix norm
x = torch.randn(25, 25, device=device, dtype=dtype)
xn = x.cpu().numpy()
for ord in supported_matrix_ords:
# TODO: Need to fix abort when nuclear norm is given cdouble input:
# "double free or corruption (!prev) Aborted (core dumped)"
if ord == 'nuc' and dtype == torch.cdouble:
continue
res = torch.linalg.norm(x, ord, keepdim=keepdim).cpu()
expected = np.linalg.norm(xn, ord, keepdims=keepdim)
msg = gen_error_message(x.size(), ord, keepdim)
self.assertEqual(res.shape, expected.shape, msg=msg)
self.assertEqual(res, expected, msg=msg)
# Test unsupported ords
# vector norm
x = torch.randn(25, device=device, dtype=dtype)
for ord, error_msg in unsupported_vector_ords:
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.linalg.norm(x, ord)
# matrix norm
x = torch.randn(25, 25, device=device, dtype=dtype)
for ord, error_msg in unsupported_matrix_ords:
with self.assertRaisesRegex(RuntimeError, error_msg):
torch.linalg.norm(x, ord)
# Test that linal.norm gives the same result as numpy when inputs
# contain extreme values (inf, -inf, nan)
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
def test_norm_extreme_values(self, device):
vector_ords = [0, 1, 2, 3, inf, -1, -2, -3, -inf]
matrix_ords = ['fro', 'nuc', 1, 2, inf, -1, -2, -inf]
vectors = []
matrices = []
for pair in itertools.product([inf, -inf, 0.0, nan, 1.0], repeat=2):
vectors.append(list(pair))
matrices.append([[pair[0], pair[1]]])
matrices.append([[pair[0]], [pair[1]]])
for vector in vectors:
x = torch.tensor(vector).to(device)
x_n = x.cpu().numpy()
for ord in vector_ords:
msg = f'ord={ord}, vector={vector}'
result = torch.linalg.norm(x, ord=ord)
result_n = np.linalg.norm(x_n, ord=ord)
self.assertEqual(result, result_n, msg=msg)
# TODO: Remove this function once the broken cases are fixed
def is_broken_matrix_norm_case(ord, x):
if self.device_type == 'cuda':
if x.size() == torch.Size([1, 2]):
if ord in ['nuc', 2, -2] and isnan(x[0][0]) and x[0][1] == 1:
# These cases are broken because of an issue with svd
# https://github.com/pytorch/pytorch/issues/43567
return True
return False
for matrix in matrices:
x = torch.tensor(matrix).to(device)
x_n = x.cpu().numpy()
for ord in matrix_ords:
msg = f'ord={ord}, matrix={matrix}'
result = torch.linalg.norm(x, ord=ord)
result_n = np.linalg.norm(x_n, ord=ord)
if is_broken_matrix_norm_case(ord, x):
self.assertNotEqual(result, result_n, msg=msg)
else:
self.assertEqual(result, result_n, msg=msg)
# Test degenerate shape results match numpy for linalg.norm vector norms
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_norm_vector_degenerate_shapes(self, device, dtype):
def run_test_case(input, ord, dim, keepdim, should_error):
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
input_numpy = input.cpu().numpy()
if should_error:
with self.assertRaises(ValueError):
np.linalg.norm(input_numpy, ord, dim, keepdim)
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
else:
if dtype in [torch.cfloat, torch.cdouble] and ord in [2, None]:
# TODO: Once these ord values have support for complex numbers,
# remove this error test case
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
return
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
result = torch.linalg.norm(input, ord, dim, keepdim)
self.assertEqual(result, result_numpy, msg=msg)
ord_vector = [0, 0.5, 1, 2, 3, inf, -0.5, -1, -2, -3, -inf, None]
S = 10
test_cases = [
# input size, p settings that cause error, dim
((0, ), [inf, -inf], None),
((0, S), [inf, -inf], 0),
((0, S), [], 1),
((S, 0), [], 0),
((S, 0), [inf, -inf], 1),
]
for keepdim in [True, False]:
for input_size, error_ords, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_vector:
run_test_case(input, ord, dim, keepdim, ord in error_ords)
# Test degenerate shape results match numpy for linalg.norm matrix norms
@skipCUDAIfNoMagma
@skipCPUIfNoLapack
@unittest.skipIf(not TEST_NUMPY, "Numpy not found")
@dtypes(torch.float, torch.double, torch.cfloat, torch.cdouble)
def test_norm_matrix_degenerate_shapes(self, device, dtype):
def run_test_case(input, ord, dim, keepdim, should_error):
if dtype in [torch.cfloat, torch.cdouble] and ord in ['fro', None]:
# TODO: Once these ord values have support for complex numbers,
# remove this error test case
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
return
msg = f'input.size()={input.size()}, ord={ord}, dim={dim}, keepdim={keepdim}, dtype={dtype}'
input_numpy = input.cpu().numpy()
if should_error:
with self.assertRaises(ValueError):
np.linalg.norm(input_numpy, ord, dim, keepdim)
with self.assertRaises(RuntimeError):
torch.linalg.norm(input, ord, dim, keepdim)
else:
result_numpy = np.linalg.norm(input_numpy, ord, dim, keepdim)
result = torch.linalg.norm(input, ord, dim, keepdim)
self.assertEqual(result, result_numpy, msg=msg)
ord_matrix = ['fro', 'nuc', 1, 2, inf, -1, -2, -inf, None]
S = 10
test_cases = [
# input size, p settings that cause error, dim
((0, 0), [1, 2, inf, -1, -2, -inf], None),
((0, S), [2, inf, -2, -inf], None),
((S, 0), [1, 2, -1, -2], None),
((S, S, 0), [], (0, 1)),
((1, S, 0), [], (0, 1)),
((0, 0, S), [1, 2, inf, -1, -2, -inf], (0, 1)),
((0, 0, S), [1, 2, inf, -1, -2, -inf], (1, 0)),
]
for keepdim in [True, False]:
for input_size, error_ords, dim in test_cases:
input = torch.randn(*input_size, dtype=dtype, device=device)
for ord in ord_matrix:
run_test_case(input, ord, dim, keepdim, ord in error_ords)
instantiate_device_type_tests(TestLinalg, globals())
if __name__ == '__main__':
run_tests()