Skip to content

GPT-2 implementation problem #27

Open
@sanhai77

Description

@sanhai77

"Hi, I am reading the GPT-2 paper and encountering a problem with the following phrase related to implementation:

'A modified initialization method is used to account for the accumulation on the residual path with model depth. We scale the weights of residual layers at initialization by a factor of 1/√N, where N is the number of residual layers.'

My problem is that we normalize after accumulation (addition then normalization). So, why do we need to scale weights? Aren't we doing this to reduce the impact of accumulation?"

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions