You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: index.html
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -26,7 +26,7 @@
26
26
<ahref='https://groupoid.space/misc/library/'>Formal Mathematics: The Cubical Base Library</a><br>
27
27
28
28
</p></div><divclass="exe"><section></section><h1>ARTICLES</h1><p>Then we publish this as an article for peer review and include in
29
-
series of articles on foundation and mathematics of Homotopy Type Theory.</p><br><br></div><divclass="types"><divclass="type"><olclass="type__col"><h3>Foundations</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/mltt/mltt.pdf">Type Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/cic/cic.pdf">Inductive Types</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/hott/hott.pdf">Homotopy Type Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/hit/hit.pdf">Higher Inductive Types</a></li><listyle="font-size:14px;"><b>Modalities</b></li></ol><olclass="type__col"><h3>Languages</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/laurent/laurent.pdf">Laurent Schwartz</a></li><listyle="font-size:14px;"><b>Ernst Zermelo</b></li><listyle="font-size:14px;"><b>Paul Cohen</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/henk/henk.pdf">Henk Barendregt</a></li><listyle="font-size:14px;"><b>Per Martin-Löf</b></li><listyle="font-size:14px;"><b>Christine Paulin-Mohring</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/anders/anders.pdf">Anders Mörtberg</a></li><listyle="font-size:14px;"><b>Dan Kan</b></li><listyle="font-size:14px;"><b>Jack Morava</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/urs/urs.pdf">Urs Schreiber</a></li><listyle="font-size:14px;"><b>Fabien Morel</b></li></ol><olclass="type__col"><h3>Mathematics</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/hom/hom.pdf">Algebra vs Geometry</a></li><listyle="font-size:14px;"><b>Set Theory</b></li><listyle="font-size:14px;"><b>Topos Theory</b></li><listyle="font-size:14px;"><b>Simple Finite Groups</b></li><listyle="font-size:14px;"><b>Categories with Families</b></li><listyle="font-size:14px;"><b>Heterogeneous Equality</b></li><listyle="font-size:14px;"><b>Abelian Groups</b></li><listyle="font-size:14px;"><b>Abelian Categories</b></li><listyle="font-size:14px;"><b>Supergeometry</b></li><listyle="font-size:14px;"><b>C-Systems</b></li><listyle="font-size:14px;"><b>Grothendieck Group</b></li></ol></div><br><br></div><divclass="exe"><section><h1>BOOKS</h1><p>As a result, a contribution is made to Book Volumes as example
29
+
series of articles on foundation and mathematics of Homotopy Type Theory.</p><br><br></div><divclass="types"><divclass="type"><olclass="type__col"><h3>Foundations</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/mltt/mltt.pdf">Type Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/cic/cic.pdf">Inductive Types</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/hott/hott.pdf">Homotopy Type Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/hit/hit.pdf">Higher Inductive Types</a></li><listyle="font-size:14px;"><b>Modalities</b></li></ol><olclass="type__col"><h3>Languages</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/laurent/laurent.pdf">Laurent Schwartz</a></li><listyle="font-size:14px;"><b>Ernst Zermelo</b></li><listyle="font-size:14px;"><b>Paul Cohen</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/henk/henk.pdf">Henk Barendregt</a></li><listyle="font-size:14px;"><b>Per Martin-Löf</b></li><listyle="font-size:14px;"><b>Christine Paulin-Mohring</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/anders/anders.pdf">Anders Mörtberg</a></li><listyle="font-size:14px;"><b>Dan Kan</b></li><listyle="font-size:14px;"><b>Jack Morava</b></li><listyle="font-size:14px;"><ahref="https://groupoid.space/articles/urs/urs.pdf">Urs Schreiber</a></li><listyle="font-size:14px;"><b>Fabien Morel</b></li></ol><olclass="type__col"><h3>Mathematics</h3><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/spt.pdf">Algebra vs Geometry</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/topos.pdf">Topos Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/cwf.pdf">Categories with Families</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/cwr.pdf">Categories with Reprepresentable Maps</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/id.pdf">Heterogeneous Equality</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/abelian.pdf">Abelian Groups</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/comprehension.pdf">Comprehension Categories</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/cube.pdf">Cosmic Cube</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/fibered.pdf">Fibered Categories</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/jean.pdf">Chevalley Descent</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/lccc.pdf">Local Cartesian Closed Categories</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/smc.pdf">Symmetric Monoidal Categories</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/modal.pdf">Cohesive Topoi</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/quillen.pdf">Quillen Model Structure</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/scheme.pdf">Grothendieck Schemes</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/simplicial.pdf">Simplicial Homotopy Theory</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/stable.pdf">Cohomology and Spectra</a></li><listyle="font-size:14px;"><ahref="https://groupoid.space/books/vol4/yoga.pdf">Grothendieck Yoga</a></li></ol></div><br><br></div><divclass="exe"><section><h1>BOOKS</h1><p>As a result, a contribution is made to Book Volumes as example
30
30
of formalization in AXIO/1 formal system.
31
31
The two common Foundations cores are: 1) MLTT (for set valued mathematics)
32
32
and 2) HoTT (for higher groupoid valued mathematics). Both are given in Volume I.</p><br><divstyle="padding-top: 8px;"><imgsrc="https://anders.groupoid.space/images/pdf.jpg" width="35"><ahref="https://groupoid.space/books/vol1/vol1.pdf"> Volume I: Foundations</a></div><br><p>The Volume II coutains articles dedicated to operating
0 commit comments