-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search_1d.py
69 lines (55 loc) · 2.34 KB
/
grid_search_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from klee_minty import *
from solver import *
import pandas as pd
from tabulate import tabulate
import pickle
dimension_grid = [2, 4, 6]#$, 10, 14, 18, 20, 22, 24, 26] # note that extended grid search uses a reduced dimension grid
tol = 1e-2
valb = 5
methods = ["Simplex", "Pontos Interiores", "Híbrido"]
variables = ["num_iterations", "elapsed_time", "solution_error"] # %costfunctionerror, %error
step = 0.5
tables = {}
varcol = {}
for var in variables: # instancia lista para tabelas
tables[var] = []
varcol[var] = {}
for method in methods:
varcol[var][method] = []
for dim in dimension_grid:
A, b, c = klee_minty(dimensions=dim, val_b=valb)
# Simplex
sol_simplex = simplex(A, b, c)
simplex_var = [dim] + [sol_simplex[var] for var in variables[:-1]]
for var in variables:
varcol[var]["Simplex"].append(sol_simplex[var])
simplex_var.append(0)
optimum = sol_simplex["max_value"]
# IP investigar porque que ta parando tao cedo se nao bateu na tolerancia
sol_ip = interior_point(A, b, c, alpha0=step, tolerance=tol, optimum=optimum)
solution_value_ip = sol_ip["max_value"]
ip_value_error = (1 - (solution_value_ip/optimum))*100
ip_var = [dim] + [sol_ip[var] for var in variables[:-1]]
for var in variables: # substituir por compreensao de lista ein
varcol[var]["Pontos Interiores"].append(sol_ip[var])
ip_var.append(ip_value_error)
# Hybrid: requires more attention, returns mutliple values for "var"
sol_hybrid = hybrid(A, b, c, alpha0=step, tolerance=tol)
hybrid_var = [dim] + [sol_hybrid[var]["total"] for var in variables[:-1]] + [0] # assume zero de erro
for var in variables:
if var=="solution_error":
varcol[var]["Híbrido"].append(sol_hybrid[var]["simplex"])
else:
varcol[var]["Híbrido"].append(sol_hybrid[var]["total"])
for v, var in enumerate(variables):
row = []
row.append(dim)
row.append(simplex_var[v+1])
row.append(ip_var[v+1])
row.append(hybrid_var[v+1])
tables[var].append(row)
# Pickle all data up to here! Maybe ( tables and varcol actually)
with open("tables.pickle", "wb") as handle:
pickle.dump(tables, handle, protocol=pickle.HIGHEST_PROTOCOL)
with open("varcol.pickle", "wb") as handle:
pickle.dump(varcol, handle, protocol=pickle.HIGHEST_PROTOCOL)