-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsiemens_star_analysis.py
248 lines (173 loc) · 7.2 KB
/
siemens_star_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import math
import numpy as np
from matplotlib import pyplot as plt
from scipy.signal import find_peaks
from scipy.optimize import curve_fit
def show_acquisition(recon_sum_norm, recon_sum, recon_sum_normalized, x0, y0):
plt.figure(figsize=(16,16), tight_layout=True)
plt.subplot(131)
plt.imshow(recon_sum_norm, cmap='gray')
plt.title('Normalization image')
plt.subplot(132)
plt.imshow(recon_sum, cmap='gray')
plt.scatter(x=y0,y=x0,s=8,color='r')
plt.title('Acquired image')
plt.subplot(133)
plt.imshow(recon_sum_normalized, cmap='gray')
plt.title('Normalized image')
def show_radii(img, x0, y0, R_MAX, R_MIN, title=None):
plt.figure(figsize=(8,8))
plt.imshow(img, cmap='gray')
plt.scatter(x=y0, y=x0, s=4, color='r')
if title is not None:
plt.title(title)
theta = np.arange(0,360,0.1)
x = np.zeros(len(theta))
y = np.zeros(len(theta))
for index,angle in enumerate(theta*np.pi/180):
x[index] = x0 + R_MAX*np.sin(angle)
y[index] = y0 + R_MAX*np.cos(angle)
plt.scatter(y,x,s=4)
for index,angle in enumerate(theta*np.pi/180):
x[index] = x0 + R_MIN*np.sin(angle)
y[index] = y0 + R_MIN*np.cos(angle)
plt.scatter(y,x,s=4)
def get_freq(radius, Np):
'''
Returns spatial frequency in cycles/pixel
'''
freq = Np/(2*np.pi*radius)
return freq
def pix_to_mm(res_radius: int, siemens_radius: int, phys_mag: float, ext_r: int,
zoom:int=1) -> float:
return res_radius * siemens_radius * phys_mag / (ext_r * zoom)
def calculate_lpmm(radius_pix: int, siemens_freq: int, siemens_radius: int,
phys_mag: float, ext_r: int, zoom:int=1) -> float:
"""Calculates resolution in linepairs per millimter (lp/mm).
Args:
radius_pix (int):
Radius in pixels at which resolution is determined.
siemens_freq (int):
Amount of black black bars in the Siemens Star.
siemens_radius (int):
Siemens Star radius in mm.
phys_mag (float):
Physical magnification due to the system's optics.
ext_r (int):
External radius in pixels.
zoom (int, optional):
Zoom applied to the acquisition. If present, the external radius
(ext_r) must be the same as in the image without zoom and this
function will calculate the correct external radius after zooming.
Defaults to 1.
Returns:
float: resolution in lp/mm.
"""
radius_mm = pix_to_mm(radius_pix, siemens_radius, phys_mag, ext_r, zoom)
theta = 2 * math.pi / siemens_freq
c = 2 * radius_mm * math.sin(theta/2)
return 1/c
def calculate_contrast(maxima, minima):
Imax = np.median(maxima)
Imax_mean = np.mean(maxima)
Imax_std = np.std(maxima)
Imax_unc = Imax_std/np.sqrt(len(maxima))
Imin = np.median(minima)
Imin_mean = np.mean(minima)
Imin_std = np.std(minima)
Imin_unc = Imin_std/np.sqrt(len(minima))
contrast = (Imax-Imin)/(Imax+Imin)
dImax2 = (2*Imax/(Imax+Imin)**2)**2
dImin2 = (2*Imin/(Imax+Imin)**2)**2
contrast_unc = np.sqrt(dImax2 * (Imax_unc**2) + dImin2 * (Imin_unc**2))
return contrast, contrast_unc, Imax, Imin
def object_resolution(res_radius: int, siemens_radius: int, siemens_freq: int,
phys_mag: float, ext_r: int, zoom:int=1) -> float:
"""Calculates resolution in mm.
Args:
res_radius (int):
Radius in pixels at which resolution is determined.
siemens_radius (int):
Siemens Star radius in mm.
siemens_freq (int):
Amount of black black bars in the Siemens Star.
phys_mag (float):
Physical magnification due to the system's optics.
ext_r (int):
External radius in pixels.
zoom (int, optional):
Zoom applied to the acquisition. If present, the external radius
(ext_r) must be the same as in the image without zoom and this
function will calculate the correct external radius after zooming.
Defaults to 1.
Returns:
float:
Real resolution at the object plane.
"""
res_r = pix_to_mm(res_radius, siemens_radius, phys_mag, ext_r, zoom)
res = 2 * np.pi * res_r / siemens_freq
return res
def find_resolution(img, x0, y0, radii, interactive=False):
d_theta = 0.0001
theta = np.arange(0,2*np.pi, d_theta)
d = int(10*np.pi/180/d_theta * 2/3)
contrast = np.zeros(len(radii))
contrast_unc = np.zeros(len(radii))
for index, R in enumerate(radii):
values = np.zeros(len(theta))
x = np.around(x0 + R*np.cos(theta)).astype('int')
y = np.around(y0 + R*np.sin(theta)).astype('int')
for i in range(len(theta)):
values[i] = img[x[i],y[i]]
# Finding maxima and minima
maxima,_ = find_peaks(values,distance=d)
minima,_ = find_peaks(-values,distance=d)
contrast[index],contrast_unc[index],Imax,Imin = calculate_contrast(
values[maxima],
values[minima])
if interactive:
plt.figure()
plt.plot(theta, values, label='profile')
plt.scatter(theta[maxima], values[maxima], label='maxima')
plt.scatter(theta[minima], values[minima], label='minima')
plt.axhline(Imax, label=f'median maximum = {Imax:.2f}')
plt.axhline(Imin, label=f'median minimum = {Imin:.2f}')
plt.xlabel('theta (rad)')
plt.ylabel('Normalized intensity')
plt.title(f'R={R} pix, contrast={contrast[index]:.3f}')
plt.legend()
plt.waitforbuttonpress()
plt.close()
ind = np.abs(contrast - 0.1).argmin()
# Forcing the contrast to be at least 0.1
if contrast[ind] < 0.1:
ind += 1
res_radius = radii[ind]
res_MTF = contrast[ind]
print(f'Found resolution at R={res_radius} pix, MTF={res_MTF}')
return res_radius, res_MTF, contrast, contrast_unc
def plot_MTF_radius(radii, contrast, contrast_unc=None):
plt.figure()
plt.plot(radii,contrast, label='MTF')
plt.axhline(0.1, label='Resolution limit') # Resolution limit at 10% of the MTF
if contrast_unc is not None:
plt.errorbar(radii,contrast,yerr=contrast_unc, label='MTF error')
plt.xlabel('Radius (pix)')
plt.ylabel('Contrast')
plt.legend()
def plot_MTF_freq(radii, contrast, contrast_unc=None):
freqs = [get_freq(R,36) for R in radii]
plt.figure()
plt.plot(freqs,contrast, label='MTF')
plt.axhline(0.1, label='Resolution limit') # Resolution limit at 10% of the MTF
if contrast_unc is not None:
plt.errorbar(freqs,contrast,yerr=contrast_unc, label='MTF error')
plt.xlabel('f (cycles/pixel)')
plt.ylabel('Contrast')
plt.title('MTF')
plt.legend()
def reciprocal_func(x, A):
return A/x
def resolution_curve_coeffs(zooms, resolutions):
popt, pcov = curve_fit(reciprocal_func, zooms, resolutions)
return popt[0]