-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinchworm.py
463 lines (378 loc) · 20.7 KB
/
inchworm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
from os import path
from collections import deque
import numpy as np
from gymnasium import utils
from gymnasium.envs.mujoco.mujoco_env import MujocoEnv
from gymnasium.spaces import Box
DEFAULT_CAMERA_CONFIG = {
"distance": 8.0,
}
class InchwormEnv(MujocoEnv, utils.EzPickle):
"""
## Description
This environment is for CSC 480.
The inchworm is a 2D robot consisting of four links attached in a line, with
rotational joints between each link. The goal is to coordinate the four links
to move in the forward (right) direction by applying torques on the three
hinges connecting the links together and controlling the adhesion actuators
on the two feet.
## Action Space
The action space is a `Box(-1, 1, (5,), float32)`.
An action represents the torques applied at the three hinge joints concatenated
with the input applied to the two adhesion actuators.
| Num | Action | Control Min | Control Max | Name (in corresponding XML file) | Joint | Unit |
| --- | ----------------------------------------------------------------- | ----------- | ----------- | -------------------------------- | -------- | ------------ |
| 0 | Torque applied on the rotor between the first and second links | -1 | 1 | left_joint | hinge | torque (N m) |
| 1 | Torque applied on the rotor between the second and third links | -1 | 1 | middle_joint | hinge | torque (N m) |
| 2 | Torque applied on the rotor between the third and fourth links | -1 | 1 | right_joint | hinge | torque (N m) |
| 3 | Whether adhesion is activated on the left foot | -1 | 1 | left_foot | adhesion | force (N) |
| 4 | Whether adhesion is activated on the right foot | -1 | 1 | right_foot | adhesion | force (N) |
## Observation Space
Observations consist of positional values of different body parts of the inchworm,
followed by the velocities of those individual parts (their derivatives) with all
the positions ordered before all the velocities.
By default, an observation is a `ndarray` with shape `(12,)`
where the elements correspond to the following:
| Num | Observation | Min | Max | Name (in corresponding XML file) | Joint | Unit |
|-----|--------------------------------------------------------------|--------|--------|----------------------------------------|-------|--------------------------|
| 0 | y-orientation of the left foot | -Inf | Inf | hc_joint | hinge | angle (deg) |
| 1 | x-coordinate of the left foot | -Inf | Inf | hsx_joint | slide | position (m) |
| 2 | z-coordinate of the left foot | -Inf | Inf | hsz_joint | slide | position (m) |
| 3 | angle between the first and second segments | -Inf | Inf | left_joint | hinge | angle (deg) |
| 4 | angle between the second and third segments | -Inf | Inf | middle_joint | hinge | angle (deg) |
| 5 | angle between the third and fourth segments | -Inf | Inf | right_joint | hinge | angle (deg) |
| 6 | y-coordinate angular velocity of the left foot | -Inf | Inf | hc_joint | hinge | angular velocity (deg/s) |
| 7 | x-coordinate velocity of the left foot | -Inf | Inf | hsx_joint | slide | velocity (m/s) |
| 8 | z-coordinate velocity of the left foot | -Inf | Inf | hsz_joint | slide | velocity (m/s) |
| 9 | angular velocity of angle between first and second segments | -Inf | Inf | left_joint | hinge | angular velocity (deg/s) |
| 10 | angular velocity of angle between second and third segments | -Inf | Inf | middle_joint | hinge | angular velocity (deg/s) |
| 11 | angular velocity of angle between third and fourth segments | -Inf | Inf | right_joint | hinge | angular velocity (deg/s) |
The (x,y,z) coordinates are translational DOFs while the orientations are rotational
DOFs expressed as quaternions. One can read more about free joints on the [Mujoco Documentation](https://mujoco.readthedocs.io/en/latest/XMLreference.html).
## Rewards
The reward consists of four parts:
- *healthy_reward*: Every timestep that the inchworm is healthy (see definition in section "Episode Termination"), it gets a reward of fixed value `healthy_reward`
- *forward_reward*: A reward of moving forward which is measured as
*(x-coordinate before action - x-coordinate after action)/dt*. *dt* is the time
between actions and is dependent on the `frame_skip` parameter (default is 5),
where the frametime is 0.01 - making the default *dt = 5 * 0.01 = 0.05*.
This reward would be positive if the inchworm moves forward (in positive x direction).
- *ctrl_cost*: A negative reward for penalising the inchworm if it takes actions for motors
that are too large. It is measured as *`ctrl_cost_weight` * sum(action[:3]<sup>2</sup>)*
where *`ctr_cost_weight`* is a parameter set for the control and has a default value of 0.5.
- *ungrounded_cost*: A negative reward for penalising the inchworm if both its feet leave
the ground. It is measured as *`ungrounded_cost_weight` * `grounded`* where *`ungrounded_cost_weight`*
is a parameter set for the control and has a default value of 100. *`grounded`* indicates whether
the inchworm is currently touching the ground or not, but will only begin returning False once
the inchworm has contacted the ground for the first time, to prevent penalising the inchworm
at the start of each episode (the inchworm spawns in the air).
The total reward returned is ***reward*** *=* *healthy_reward + forward_reward - ctrl_cost - ungrounded_cost*.
`info` will also contain the individual reward terms.
## Starting State
All observations start in state
(0.0, 0.0, 0.0, 0.0, 0.0, ..., 0.0) with a uniform noise in the range
of [-`reset_noise_scale`, `reset_noise_scale`] added to the positional values and standard normal noise
with mean 0 and standard deviation `reset_noise_scale` added to the velocity values for
stochasticity. The initial orientation is designed to make the inchworm face forward.
## Episode End
The inchworm is said to be unhealthy if any of the following happens:
1. Any of the state space values is no longer finite
If `terminate_when_unhealthy=True` is passed during construction (which is the default),
the episode ends when any of the following happens:
1. Truncation: The episode duration reaches 1000 timesteps
2. Termination: The inchworm is unhealthy
If `terminate_when_unhealthy=False` is passed, the episode is ended only when 1000 timesteps are exceeded.
## Arguments
| Parameter | Type | Default | Description |
|----------------------------|-----------|------------------|-------------------------------|
| `xml_file` | **str** | `"inchworm.xml"` | Path to a MuJoCo model |
| `old_model` | **bool** | `False` | If true, use the old version of the inchworm xml environment
| `episode_length` | **int** | `1000` | Number of timesteps per episode (before truncation) |
| `evals` | **bool** | `False` | If true, calculate evaluation metrics on the episodes
| `ctrl_cost_weight` | **float** | `0.5` | Weight for *ctrl_cost* term (see section on reward) |
| `ungrounded_cost_weight` | **float** | `100` | Weight for *ungrounded_cost* term (see section on reward) |
| `healthy_reward` | **float** | `1` | Constant reward given if the inchworm is "healthy" after timestep |
| `terminate_when_unhealthy` | **bool** | `True` | If true, issue a done signal if the inchworm is deemed to be "unhealthy" |
| `reset_noise_scale` | **float** | `0.1` | Scale of random perturbations of initial position and velocity (see section on Starting State) |
"""
metadata = {
"render_modes": [
"human",
"rgb_array",
"depth_array",
],
"render_fps": 100,
}
root_body = "mid_point"
left_gripper_geom = "left_gripper_geom"
right_gripper_geom = "right_gripper_geom"
left_foot = "left_foot"
right_foot = "right_foot"
inchworm_xml_file = path.join(path.dirname(__file__), "inchworm.xml")
old_inchworm_xml_file = path.join(path.dirname(__file__), "inchworm_old.xml")
def __init__(
self,
xml_file=inchworm_xml_file,
episode_length=1000,
old_model=False,
evals=False,
ctrl_cost_weight=0.5,
ungrounded_cost_weight=100,
healthy_reward=1.0,
terminate_when_unhealthy=True,
reset_noise_scale=0.1,
**kwargs,
):
if old_model:
xml_file = self.old_inchworm_xml_file
self.root_body = self.left_foot
utils.EzPickle.__init__(
self,
xml_file,
episode_length,
old_model,
evals,
ctrl_cost_weight,
ungrounded_cost_weight,
healthy_reward,
terminate_when_unhealthy,
reset_noise_scale,
**kwargs,
)
# How many frames to apply an action for when that action is applied to the environment
frame_skip = 5
# Store parameters
self._episode_length = episode_length
self._old_model = old_model
self._evals = evals
self._ctrl_cost_weight = ctrl_cost_weight
self._ungrounded_cost_weight = ungrounded_cost_weight
self._healthy_reward = healthy_reward
self._terminate_when_unhealthy = terminate_when_unhealthy
self._reset_noise_scale = reset_noise_scale
obs_shape = 12
observation_space = Box(
low=-np.inf, high=np.inf, shape=(obs_shape,), dtype=np.float64
)
# Indicates whether the inchworm has contacted the ground yet
self.has_contacted_ground = False
# Evaluation records
if self._evals:
self._evals_reward_record = []
self._evals_velocity_record = []
self._evals_motor_input_record = []
self._evals_ground_contact_record = []
self._evals_upside_down_record = []
self._evals_reward_avg_record = []
self._evals_velocity_avg_record = []
self._evals_motor_input_avg_record = []
self._evals_ground_contact_freq_record = []
self._evals_upside_down_freq_record = []
self._eval_avgs = {
"reward_avg": 0,
"velocity_avg": 0,
"motor_input_avg": 0,
"ground_contact_freq": 0,
"upside_down_freq": 0,
}
MujocoEnv.__init__(
self,
xml_file,
frame_skip=frame_skip,
observation_space=observation_space,
default_camera_config=DEFAULT_CAMERA_CONFIG,
**kwargs,
)
def _set_action_space(self):
"""
Overriding this method so that we can manually set our action
space to be in the range [-1, 1] for all actuators. This consistent
and somewhat normalized action space helps the performance of many
RL algorithms
"""
num_actuators = self.model.nu
self.action_space = Box(
low=-1, high=1, shape=(num_actuators,), dtype=np.float32
)
return self.action_space
@property
def is_grounded(self):
"""
Whether the inchworm is currently touching the ground with at least one foot
"""
if self._old_model:
return self.data.ncon > 0
left_gripper_id = self.data.geom(self.left_gripper_geom).id
right_gripper_id = self.data.geom(self.right_gripper_geom).id
grounded = False
for i in range(self.data.ncon):
contact = self.data.contact[i]
if (contact.geom1 == left_gripper_id or
contact.geom2 == left_gripper_id):
grounded = True
if (contact.geom1 == right_gripper_id or
contact.geom2 == right_gripper_id):
grounded = True
return grounded
@property
def is_upside_down(self):
"""
Returns true if the inchworm is upside down
"""
left_foot_xpos = self.get_body_com(self.left_foot).copy()[0]
right_foot_xpos = self.get_body_com(self.right_foot).copy()[0]
return left_foot_xpos - right_foot_xpos > 1
@property
def healthy_reward(self):
return (
float(
self.is_healthy or self._terminate_when_unhealthy
) * self._healthy_reward
)
def control_cost(self, action):
"""
Control cost is a penalty for applying large forces to the hinge motors
(the first three values of the action)
"""
control_cost = self._ctrl_cost_weight * np.sum(np.square(action[:3]))
return control_cost
def ungrounded_cost(self):
"""
Cost for being ungrounded
"""
self.has_contacted_ground = self.has_contacted_ground or self.is_grounded
grounded = not self.has_contacted_ground or self.is_grounded # Once grounded, must stay grounded
ungrounded_cost = self._ungrounded_cost_weight * float(not grounded)
return ungrounded_cost
@property
def is_healthy(self):
# State vector contains all the positions and velocities
state = self.state_vector()
is_finite = np.isfinite(state).all()
is_healthy = is_finite
return is_healthy
@property
def terminated(self):
terminated = not self.is_healthy if self._terminate_when_unhealthy else False
return terminated
def step(self, action):
"""
Correct the inputs to the adhesion actuators so that
they are either 0 (off) or 1 (on). They are given in
the range [-1, 1]
"""
rescaled_adhesion_actions = (action[3:5] + 1) / 2 # Rescale to [0, 1]
action[3:5] = np.round(rescaled_adhesion_actions) # Round to 0 or 1
# Record current robot position, apply the action to the simulation, then record the resulting robot position
xpos_before, _, _ = self.get_body_com(self.root_body).copy()
self.do_simulation(action, self.frame_skip)
xpos_after, _, _ = self.get_body_com(self.root_body).copy()
# Calculate the robot's forward (x-axis) velocity based on its change in position
x_velocity = (xpos_after - xpos_before) / self.dt
# Calculate positive rewards
forward_reward = x_velocity
healthy_reward = self.healthy_reward
rewards = forward_reward + healthy_reward
# Calculate penalties
ctrl_cost = self.control_cost(action)
ungrounded_cost = self.ungrounded_cost()
costs = ctrl_cost + ungrounded_cost
# Calculate total reward to give to the agent
reward = rewards - costs
self.displacement = max(self.displacement, xpos_after)
terminated = self.terminated
self.num_steps += 1
truncated = self.num_steps == self._episode_length
observation = self._get_obs()
# Compile informative statistics to pass back to the caller
info = {
"reward_forward": forward_reward,
"reward_survive": healthy_reward,
"penalty_ctrl": ctrl_cost,
"x_position": xpos_after,
"x_velocity": x_velocity
}
# Render the current simulation frame
if self.render_mode == "human":
self.render()
if self._evals:
self._evals_reward_record.append(reward)
self._evals_velocity_record.append(x_velocity)
self._evals_motor_input_record.append(ctrl_cost / self._ctrl_cost_weight)
self._evals_ground_contact_record.append(self.is_grounded)
self._evals_upside_down_record.append(self.is_upside_down)
info["evals"] = self._eval_avgs
return observation, reward, terminated, truncated, info
def _get_obs(self):
# Agent is allowed to sense the position and velocity of each DOF across all its joints
position = self.data.qpos.flat.copy()
velocity = self.data.qvel.flat.copy()
return np.concatenate((position, velocity))
def reset_model(self):
# Low and high ends of the random noise that gets added to the initial positions and velocities
noise_low = -self._reset_noise_scale
noise_high = self._reset_noise_scale
# Add noise to the initial positions and velocities
qpos = self.init_qpos + self.np_random.uniform(
low=noise_low, high=noise_high, size=self.model.nq
)
qvel = (
self.init_qvel
+ self._reset_noise_scale
* self.np_random.standard_normal(self.model.nv)
)
self.set_state(qpos, qvel)
if self._evals and len(self._evals_reward_record) > 100:
ep_eval = InchwormEnv.calc_evals({
"reward_avg": self._evals_reward_record,
"velocity_avg": self._evals_velocity_record,
"motor_input_avg": self._evals_motor_input_record,
"ground_contact_freq": self._evals_ground_contact_record,
"upside_down_freq": self._evals_upside_down_record
})
InchwormEnv.print_evals(ep_eval, "Episode Evaluation")
# Save averages and frequencies to lists
self._evals_reward_avg_record.append(ep_eval["reward_avg"])
self._evals_velocity_avg_record.append(ep_eval["velocity_avg"])
self._evals_motor_input_avg_record.append(ep_eval["motor_input_avg"])
self._evals_ground_contact_freq_record.append(ep_eval["ground_contact_freq"])
self._evals_upside_down_freq_record.append(ep_eval["upside_down_freq"])
# Calculate the average of the averages and the average of the frequencies
self._eval_avgs = InchwormEnv.calc_evals({
"reward_avg": self._evals_reward_avg_record,
"velocity_avg": self._evals_velocity_avg_record,
"motor_input_avg": self._evals_motor_input_avg_record,
"ground_contact_freq": self._evals_ground_contact_freq_record,
"upside_down_freq": self._evals_upside_down_freq_record
})
# Reset the evaluation statistics
self._evals_reward_record = []
self._evals_velocity_record = []
self._evals_motor_input_record = []
self._evals_ground_contact_record = []
self._evals_upside_down_record = []
self.num_steps = 0
self.displacement = self.get_body_com(self.root_body)[0].copy()
self.contacted_ground = False
# Retrieve and return the first observation of the reset environment
observation = self._get_obs()
return observation
@staticmethod
def calc_evals(evals) -> dict:
return {
"reward_avg": np.mean(evals["reward_avg"]),
"velocity_avg": np.mean(evals["velocity_avg"]),
"motor_input_avg": np.mean(evals["motor_input_avg"]),
"ground_contact_freq": np.sum(evals["ground_contact_freq"]) / len(evals["ground_contact_freq"]),
"upside_down_freq": np.sum(evals["upside_down_freq"]) / len(evals["upside_down_freq"])
}
@staticmethod
def print_evals(evals: dict, label: str):
print(
f"{label}\n" +
f"\treward_avg: {evals['reward_avg']}\n" +
f"\tvelocity_avg: {evals['velocity_avg']}\n" +
f"\tmotor_input_avg: {evals['motor_input_avg']}\n" +
f"\tground_contact_freq: {evals['ground_contact_freq']}\n" +
f"\tupside_down_freq: {evals['upside_down_freq']}\n"
)