@@ -82,19 +82,19 @@ template <typename T>
82
82
class KmeansRandomInit : public KmeansInitBase <T> {
83
83
private:
84
84
int seed_;
85
- std::unique_ptr<GeneratorBase <T>> generator_impl_;
85
+ std::unique_ptr<RandomGeneratorBase <T>> generator_impl_;
86
86
87
87
public:
88
88
/*
89
89
* @param seed Random seed for generating centroids.
90
90
*/
91
91
KmeansRandomInit (size_t _seed) :
92
- seed_ (_seed), generator_impl_ (new UniformGenerator <T>) {}
92
+ seed_ (_seed), generator_impl_ (new UniformRandomGenerator <T>) {}
93
93
94
94
/*
95
95
* @param gen Unique pointer to Random generator for generating centroids.
96
96
*/
97
- KmeansRandomInit (std::unique_ptr<GeneratorBase <T>>& _gen) :
97
+ KmeansRandomInit (std::unique_ptr<RandomGeneratorBase <T>>& _gen) :
98
98
generator_impl_ (std::move(_gen)) {}
99
99
100
100
virtual ~KmeansRandomInit () override {}
@@ -134,7 +134,7 @@ struct KmeansLlInit : public KmeansInitBase<T> {
134
134
// Suggested in original paper, 8 is usually enough.
135
135
constexpr static float MAX_ITER = 8 ;
136
136
137
- std::unique_ptr<GeneratorBase <T>> generator_;
137
+ std::unique_ptr<RandomGeneratorBase <T>> generator_;
138
138
139
139
// Buffer like variables
140
140
// store the self dot product of each data point
@@ -156,7 +156,7 @@ struct KmeansLlInit : public KmeansInitBase<T> {
156
156
*/
157
157
KmeansLlInit () :
158
158
over_sample_ (1 .5f ), seed_ (-1 ), k_ (0 ),
159
- generator_ (new UniformGenerator <T>) {}
159
+ generator_ (new UniformRandomGenerator <T>) {}
160
160
161
161
/*
162
162
* Initialize KmeansLlInit algorithm.
@@ -168,7 +168,7 @@ struct KmeansLlInit : public KmeansInitBase<T> {
168
168
*/
169
169
KmeansLlInit (T _over_sample) :
170
170
over_sample_ (_over_sample), seed_ (-1 ), k_ (0 ),
171
- generator_ (new UniformGenerator <T>) {}
171
+ generator_ (new UniformRandomGenerator <T>) {}
172
172
173
173
/*
174
174
* Initialize KmeansLlInit algorithm.
@@ -181,7 +181,7 @@ struct KmeansLlInit : public KmeansInitBase<T> {
181
181
*/
182
182
KmeansLlInit (int _seed, T _over_sample) :
183
183
seed_ (_seed), over_sample_(_over_sample), k_(0 ),
184
- generator_ (new UniformGenerator <T>(seed_)) {}
184
+ generator_ (new UniformRandomGenerator <T>(seed_)) {}
185
185
186
186
/*
187
187
* Initialize KmeansLlInit algorithm.
@@ -193,8 +193,9 @@ struct KmeansLlInit : public KmeansInitBase<T> {
193
193
* Note that when \f$over_sample != 1\f$, the probability for each data
194
194
* point doesn't add to 1.
195
195
*/
196
- KmeansLlInit (std::unique_ptr<GeneratorBase<T>>& _gen, T _over_sample) :
197
- generator_ (std::move(_gen)), over_sample_ (1 .5f ), seed_ (-1 ), k_(0 ) {}
196
+ KmeansLlInit (std::unique_ptr<RandomGeneratorBase<T>>& _gen, T _over_sample) :
197
+ generator_ (std::move(_gen)), over_sample_ (_over_sample), seed_ (-1 ),
198
+ k_ (0 ) {}
198
199
199
200
virtual ~KmeansLlInit () override {}
200
201
0 commit comments