-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcontext_encoding.py
357 lines (340 loc) · 19.2 KB
/
context_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
import numpy as np
import tensorflow as tf
import os
import logging
import load_data
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.contrib import seq2seq
from tensorflow.contrib import legacy_seq2seq
from question_encoding import *
class context_encoding(object):
def __init__(self,config):
self.c_bp_lstm=context_bottom_up_lstm(config)
self.inputs=self.c_bp_lstm.sentences_root_states
self.inputs=tf.expand_dims(self.inputs, 0) #[1 , sentence_num, hidden_dim]
self.sentence_num=tf.gather(tf.shape(self.inputs),1)
self.sentence_num_batch=tf.expand_dims(self.sentence_num, 0) #[1]
with tf.variable_scope('context_lstm_forward'):
self.fwcell=rnn.BasicLSTMCell(config.hidden_dim, activation=tf.nn.tanh)
with tf.variable_scope('context_lstm_backward'):
self.bwcell=rnn.BasicLSTMCell(config.hidden_dim, activation=tf.nn.tanh)
with tf.variable_scope('context_bidirectional_chain_lstm'):
self._fw_initial_state=self.fwcell.zero_state(1,dtype=tf.float32)
self._bw_initial_state=self.bwcell.zero_state(1,dtype=tf.float32)
chain_outputs, chain_state=tf.nn.bidirectional_dynamic_rnn(self.fwcell, self.bwcell, self.inputs, self.sentence_num_batch, initial_state_fw=self._fw_initial_state, initial_state_bw=self._bw_initial_state)
chain_outputs=tf.concat(chain_outputs, 2) #[1, sentence_num, 2*hidden_dim]
chain_outputs=tf.gather(chain_outputs, 0) #[sentence_num, 2*hidden_dim]
self.c_td_lstm=context_top_down_lstm(config, self.c_bp_lstm, chain_outputs)
self.sentences_final_states=self.get_tree_states(self.c_bp_lstm.sentences_hidden_states, self.c_td_lstm.sentences_hidden_states)
def get_tree_states(self, sentences_bp_states,sentences_td_states):
rev_td_states=tf.reverse(sentences_td_states, axis=[1])
states=tf.concat(values=[sentences_bp_states, rev_td_states],axis=2)
return states
class context_bottom_up_lstm(object):
def __init__(self,config):
self.max_sentence_num=20
self.emb_dim = config.emb_dim
self.hidden_dim = config.hidden_dim
self.num_emb = config.num_emb
self.config=config
self.sentence_num=None
self.reg=self.config.reg #regulizer parameter
self.degree=config.degree # 2, the N-ary
self.add_placeholders()
#batch_size * maxnodesize * emb_dim
emb_leaves = self.add_embedding()
self.add_model_variables()
self.sentences_hidden_states = self.compute_sentences_states(emb_leaves)
#[sentences, node_size,hidden_value]
self.sentences_root_states=self.get_sentences_root_states(self.sentences_hidden_states)
#[sentences_num, hidden_value]
def get_sentences_root_states(self, sentences_states):
def _get_root_states(x):
states=tf.gather(x, tf.subtract(tf.gather(tf.shape(x),0),1))
return states
hidden_states = tf.map_fn(_get_root_states,sentences_states)
return hidden_states
def add_placeholders(self):
dim2=self.config.maxnodesize #parse tree node的数量
#dim1=self.max_sentence_num # max sentence num, parallel computing
self.sentence_num=tf.placeholder(tf.int32,name='context_sentence_num')
self.input = tf.placeholder(tf.int32,[None,dim2],name='context_input')
self.input=tf.gather(self.input, tf.range(self.sentence_num))
self.treestr = tf.placeholder(tf.int32,[None,dim2,2],name='context_tree')
self.treestr = tf.gather(self.treestr, tf.range(self.sentence_num))
self.dropout = tf.placeholder(tf.float32,name='context_dropout')
self.n_inodes = tf.reduce_sum(tf.to_int32(tf.not_equal(self.treestr,-1)),[1,2])
self.n_inodes = self.n_inodes//2
self.num_leaves = tf.reduce_sum(tf.to_int32(tf.not_equal(self.input,-1)),[1])
def add_embedding(self):
with tf.variable_scope("Embed",regularizer=None,reuse=True):
#embedding=tf.get_variable('embedding',[self.num_emb,self.emb_dim],initializer=self.emb_mat, trainable=False)
embedding=tf.get_variable('embedding')
ix=tf.to_int32(tf.not_equal(self.input,-1))*self.input
emb_tree=tf.nn.embedding_lookup(embedding,ix)
#emb_tree [sentence_num, maxnodesize, emb_dim]
emb_tree=emb_tree*(tf.expand_dims(
tf.to_float(tf.not_equal(self.input,-1)),2))
return emb_tree
def calc_wt_init(self,fan_in=300):
eps=1.0/np.sqrt(fan_in)
return eps
def add_model_variables(self):
with tf.variable_scope("context_btp_Composition",
initializer=
tf.contrib.layers.xavier_initializer(),
regularizer=
tf.contrib.layers.l2_regularizer(self.config.reg
)):
cU = tf.get_variable("cU",[self.emb_dim,2*self.hidden_dim],initializer=tf.random_uniform_initializer(-self.calc_wt_init(),self.calc_wt_init()))
cW = tf.get_variable("cW",[self.degree*self.hidden_dim,(self.degree+3)*self.hidden_dim],initializer=tf.random_uniform_initializer(-self.calc_wt_init(self.hidden_dim),self.calc_wt_init(self.hidden_dim)))
cb = tf.get_variable("cb",[4*self.hidden_dim],initializer=tf.constant_initializer(0.0),regularizer=tf.contrib.layers.l2_regularizer(0.0))
def process_leafs(self,emb):
#emb: [num_leaves, emd_dim]
with tf.variable_scope("btp_Composition",reuse=True):
cU = tf.get_variable("cU",[self.emb_dim,2*self.hidden_dim])
cb = tf.get_variable("cb",[4*self.hidden_dim])
b = tf.slice(cb,[0],[2*self.hidden_dim])
#叶子节点没有input gate和forget gate,需要计算output gate 和Input value
def _recurseleaf(x):
#[1, emb_dim], [emb_dim, 2*self.hidden_dim]
concat_uo = tf.matmul(tf.expand_dims(x,0),cU) + b
#把concat_uo切割成
#[1*hidden_dim] [1*hidden_dim]
u,o = tf.split(axis=1,num_or_size_splits=2,value=concat_uo)
o=tf.nn.sigmoid(o)
u=tf.nn.tanh(u)
c = u#tf.squeeze(u)
h = o * tf.nn.tanh(c)
hc = tf.concat(axis=1,values=[h,c])
hc=tf.squeeze(hc)
return hc
hc = tf.map_fn(_recurseleaf,emb)
#hc [num_leaves, 2*hidden_dim]
return hc
def compute_sentences_states(self,emb_batch):
states_h=self.compute_states(emb_batch,0)
#[1 nodenum hidden_dim]
idx_batch=tf.constant(1)
def _computestates(states, emb_batch, idx_batch):
cur_states=self.compute_states(emb_batch,idx_batch)
#[1* node_num ,hidden_value]
states=tf.concat([states, cur_states], axis=0)
idx_batch=tf.add(idx_batch,1)
return states,emb_batch,idx_batch
loop_cond=lambda a1,b1,idx_var: tf.less(idx_var, self.sentence_num)
loop_vars=[states_h,emb_batch,idx_batch]
states_h,emb_batch,idx_batch=tf.while_loop(loop_cond, _computestates, loop_vars,
shape_invariants=[tf.TensorShape([None,None,self.hidden_dim]),emb_batch.get_shape(),idx_batch.get_shape()])
return states_h #[sentence_num, node_size, hidden_dim]
def compute_states(self,emb,idx_batch=0):
num_leaves = tf.squeeze(tf.gather(self.num_leaves,idx_batch))
n_inodes = tf.gather(self.n_inodes,idx_batch)
embx=tf.gather(tf.gather(emb,idx_batch),tf.range(num_leaves))
treestr=tf.gather(self.treestr,idx_batch)
treestr=tf.gather(treestr,tf.range(n_inodes))
#treestr [n_inodes, 2]
#[num_leaves, 2*hidden_dim]
leaf_hc = self.process_leafs(embx)
leaf_h,leaf_c=tf.split(axis=1,num_or_size_splits=2,value=leaf_hc)
nodes_h=tf.identity(leaf_h)
#[num_leaves, hidden_dim]
nodes_c=tf.identity(leaf_c)
idx_var=tf.constant(0) #tf.Variable(0,trainable=False)
with tf.variable_scope("btp_Composition",reuse=True):
# cW 2*hidden(两个子节点的Hidden value, 5*hidden
cW = tf.get_variable("cW",[self.degree*self.hidden_dim,(self.degree+3)*self.hidden_dim])
cb = tf.get_variable("cb",[4*self.hidden_dim])
bu,bo,bi,bf=tf.split(axis=0,num_or_size_splits=4,value=cb)
def _recurrence(node_h,node_c,idx_var):
node_info=tf.gather(treestr,idx_var)
#node_info [2, ]
child_h=tf.gather(node_h,node_info)
child_c=tf.gather(node_c,node_info)
flat_ = tf.reshape(child_h,[-1])
#[1* hidden_dim]
tmp=tf.matmul(tf.expand_dims(flat_,0),cW)
u,o,i,fl,fr=tf.split(axis=1,num_or_size_splits=5,value=tmp)
i=tf.nn.sigmoid(i+bi)
o=tf.nn.sigmoid(o+bo)
u=tf.nn.tanh(u+bu)
fl=tf.nn.sigmoid(fl+bf)
fr=tf.nn.sigmoid(fr+bf)
f=tf.concat(axis=0,values=[fl,fr])
c = i * u + tf.reduce_sum(f*child_c,[0])
h = o * tf.nn.tanh(c)
node_h = tf.concat(axis=0,values=[node_h,h])
node_c = tf.concat(axis=0,values=[node_c,c])
idx_var=tf.add(idx_var,1)
return node_h,node_c,idx_var
#Returns the truth value of (x < y) element-wise
loop_cond = lambda a1,b1,idx_var: tf.less(idx_var,n_inodes)
loop_vars=[nodes_h,nodes_c,idx_var]
nodes_h,nodes_c,idx_var=tf.while_loop(loop_cond, _recurrence,
loop_vars,parallel_iterations=10)
return tf.expand_dims(nodes_h,0)
#[1* node_num ,hidden_value]
def add_training_op(self):
pass
class context_top_down_lstm(object):
def __init__(self,config, c_bp_lstm, roots_states):
self.max_sentence_num=20
self.emb_dim=config.emb_dim
self.hidden_dim=config.hidden_dim
self.num_emb=config.num_emb
self.config=config
self.sentences_root_hs=roots_states #[sentence_num , 2*hidden_dim]
self.reg=config.reg
self.degree=config.degree
self.sentence_num=c_bp_lstm.sentence_num
self.add_placeholders()
emb_leaves = self.add_embedding()
self.add_more_variables()
self.sentences_hidden_states=self.compute_sentences_states_h(emb_leaves)
#self.sentences_root_states=self.get_root_states(self.sentences_states)
def get_root_states(self, sentences_states):
def _get_root_states(x):
states=tf.gather(x, tf.subtract(tf.gather(tf.shape(x),0),1))
return states
hidden_states = tf.map_fn(_get_root_states,sentences_states)
def add_embedding(self):
with tf.variable_scope("Embed",reuse=True):
#emb_tree [sentence_num, maxnodesize, emb_dim]
#input[sentence_num, maxnodesize ]
embedding=tf.get_variable('embedding')
tix=tf.to_int32(tf.not_equal(self.t_input,-1))*self.t_input
emb_tree=tf.nn.embedding_lookup(embedding, tix)
#sentencenum*maxnodesize*embedding_dim
emb_tree=emb_tree*(tf.expand_dims(
tf.to_float(tf.not_equal(self.t_input,-1)),2))
return emb_tree
def add_placeholders(self):
dim2=self.config.maxnodesize
self.t_input=tf.placeholder(tf.int32,[None,dim2],name='context_td_input')
self.t_input=tf.gather(self.t_input, tf.range(self.sentence_num))
self.t_treestr = tf.placeholder(tf.int32,[None,dim2],name='context_td_tree')
self.t_treestr=tf.gather(self.t_treestr, tf.range(self.sentence_num))
self.t_par_leaf = tf.placeholder(tf.int32,[None,dim2],name='context_td_par_leaf')
self.t_par_leaf = tf.gather(self.t_par_leaf, tf.range(self.sentence_num))
self.dropout = tf.placeholder(tf.float32,name='context_td_dropout')
self.num_leaves = tf.reduce_sum(tf.to_int32(tf.not_equal(self.t_input,-1)),[1])
self.n_inodes = tf.reduce_sum(tf.to_int32(tf.not_equal(self.t_treestr,-1)),[1])
adder=tf.ones(tf.shape(self.num_leaves),dtype=tf.int32)
self.n_inodes =tf.add(self.n_inodes,adder)
def add_more_variables(self):
with tf.variable_scope('context_td_composition',initializer=tf.contrib.layers.xavier_initializer(),
regularizer=tf.contrib.layers.l2_regularizer(self.config.reg)):
#hidden states and cell states of parents
cW = tf.get_variable("cW",[self.hidden_dim+self.emb_dim,4*self.hidden_dim],
initializer=tf.random_uniform_initializer(-self.calc_wt_init(self.hidden_dim),self.calc_wt_init(self.hidden_dim)))
cb = tf.get_variable("cb",[4*self.hidden_dim],
initializer=tf.constant_initializer(0.0),regularizer=tf.contrib.layers.l2_regularizer(0.0))
def calc_wt_init(self,fan_in=300):
eps=1.0/np.sqrt(fan_in)
return eps
def compute_sentences_states_h(self,emb_leaves):
#return [sentence_num ,nodes_size, hidden_dim]
inodes_h, inodes_c=self.compute_inodes_states(0)
nodes_h,nodes_c=self.process_leafs(inodes_h, inodes_c, emb_leaves,0)
nodes_h_states=tf.expand_dims(nodes_h,axis=0)
logging.warn('{}'.format(nodes_h_states.shape))
logging.warn('expand_dims done')
#[1 nodenum hiddenvalue]
idx_curbatch=tf.constant(1)
def _tdcomputestate(idx_curbatch,nodes_h_states):
tmpinodes_h, tmpinodes_c=self.compute_inodes_states(idx_curbatch)
tmpnodes_h,tmpnodes_c=self.process_leafs(tmpinodes_h, tmpinodes_c, emb_leaves, idx_curbatch)
curnodes_h=tf.expand_dims(tmpnodes_h,0)
nodes_h_states=tf.concat([nodes_h_states, curnodes_h], axis=0)
idx_curbatch=tf.add(idx_curbatch,1)
return idx_curbatch, nodes_h_states
loop_cond=lambda idx,a: tf.less(idx, self.sentence_num)
loop_vars=[idx_curbatch, nodes_h_states]
idx_curbatch, nodes_h_states=tf.while_loop(loop_cond, _tdcomputestate, loop_vars,
shape_invariants=[idx_curbatch.get_shape(),tf.TensorShape([None,None,self.hidden_dim])])
return nodes_h_states
def process_leafs(self,inodes_h,inodes_c,emb_leaves,idx_batch):
logging.warn('begin get num leaves')
num_leaves = tf.squeeze(tf.gather(self.num_leaves,idx_batch))
logging.warn('get num leaves done')
embx=tf.gather(tf.gather(emb_leaves,idx_batch),tf.range(num_leaves))
logging.warn('get leaf embedding done')
leaf_parent=tf.gather(tf.gather(self.t_par_leaf,idx_batch),tf.range(num_leaves))
logging.warn('get leaf parents array done')
node_h=tf.identity(inodes_h)
node_c=tf.identity(inodes_c)
with tf.variable_scope('td_Composition',reuse=True):
cW=tf.get_variable('cW',[self.hidden_dim+self.emb_dim,4*self.hidden_dim])
cb=tf.get_variable('cb',[4*self.hidden_dim])
bu,bo,bi,bf=tf.split(axis=0,num_or_size_splits=4,value=cb)
idx_var=tf.constant(0)
logging.warn('begin enumerate the idx_var')
def _recurceleaf(node_h, node_c,idx_var):
node_info=tf.gather(leaf_parent, idx_var)
logging.warn('get t_idx, the index of parent')
cur_embed=tf.gather(embx, idx_var)
#node_h:[inode_size, dim_hidden]
parent_h=tf.gather(node_h, node_info)
parent_c=tf.gather(node_c, node_info)
cur_input=tf.concat(values=[parent_h, cur_embed],axis=0)
flat_=tf.reshape(cur_input, [-1])
tmp=tf.matmul(tf.expand_dims(flat_,0),cW)
u,o,i,f=tf.split(axis=1,num_or_size_splits=4,value=tmp)
i=tf.nn.sigmoid(i+bi)
o=tf.nn.sigmoid(o+bo)
u=tf.nn.sigmoid(u+bu)
f=tf.nn.sigmoid(f+bf)
c=i*u+tf.reduce_sum(f*parent_c,[0])
h=o*tf.nn.tanh(c)
node_h=tf.concat(axis=0,values=[node_h,h])
node_c=tf.concat(axis=0,values=[node_c,c])
idx_var=tf.add(idx_var,1)
logging.warn('get new node_h and new node_c done')
return node_h, node_c, idx_var
loop_cond=lambda a1,b1,idx_var:tf.less(idx_var,num_leaves)
loop_vars=[node_h,node_c,idx_var]
node_h,node_c,idx_var=tf.while_loop(loop_cond, _recurceleaf,loop_vars,
shape_invariants=[tf.TensorShape([None,self.hidden_dim]),tf.TensorShape([None,self.hidden_dim]),idx_var.get_shape()])
logging.warn('return new node_h, finished')
return node_h,node_c
def compute_inodes_states(self,idx_batch=0):
#return [nodes_size, hidden_dim], [nodes_size, cell_dim]
n_inodes = tf.gather(self.n_inodes,idx_batch)
t_treestr=tf.gather(tf.gather(self.t_treestr,idx_batch),tf.range(n_inodes))
#t_treestr[n_inodes]
node_states = tf.gather(self.sentences_root_hs,idx_batch)
#[2* hidden_dim]
root_state, root_cell =tf.split(node_states, num_or_size_splits=2, axis=0)
root_state=tf.expand_dims(root_state, 0)
root_cell=tf.expand_dims(root_cell, 0)
inode_h=tf.identity(root_state)
inode_c=tf.identity(root_state)
idx_var=tf.constant(1)
with tf.variable_scope('context_td_composition',reuse=True):
cW=tf.get_variable('cW',[self.hidden_dim+self.emb_dim,4*self.hidden_dim])
cW,_=tf.split(value=cW,num_or_size_splits=[self.hidden_dim, self.emb_dim],axis=0)
cb=tf.get_variable('cb',[4*self.hidden_dim])
bu, bo, bi, bf=tf.split(axis=0,num_or_size_splits=4,value=cb)
def _recurrence(node_h,node_c,idx_var):
node_info=tf.gather(t_treestr, idx_var) #get t_idx, the index of parent
parent_h=tf.gather(node_h, node_info)
parent_c=tf.gather(node_c, node_info)
flat_=tf.reshape(parent_h, [-1])
tmp=tf.matmul(tf.expand_dims(flat_,0),cW)
u,o,i,f=tf.split(axis=1,num_or_size_splits=4,value=tmp)
i=tf.nn.sigmoid(i+bi)
o=tf.nn.sigmoid(o+bo)
u=tf.nn.sigmoid(u+bu)
f=tf.nn.sigmoid(f+bf)
c=i*u+tf.reduce_sum(f*parent_c,[0])
h=o*tf.nn.tanh(c)
node_h=tf.concat(axis=0,values=[node_h,h])
node_c=tf.concat(axis=0,values=[node_c,c])
idx_var=tf.add(idx_var,1)
return node_h, node_c, idx_var
loop_cond=lambda a1,b1,idx_var: tf.less(idx_var, n_inodes)
loop_vars=[inode_h,inode_c,idx_var]
inode_h,inode_c,idx_var=tf.while_loop(loop_cond, _recurrence,loop_vars,
shape_invariants=[tf.TensorShape([None, self.hidden_dim]),tf.TensorShape([None,self.hidden_dim]), idx_var.get_shape()])
return inode_h,inode_c