-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhand_gesture_detection.py
38 lines (38 loc) · 1.3 KB
/
hand_gesture_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import cv2
import numpy as np
import mediapipe as mp
import tensorflow as tf
from tensorflow.keras.models import load_model
mpHands = mp.solutions.hands
hands = mpHands.Hands(max_num_hands=1, min_detection_confidence=0.7)
mpDraw = mp.solutions.drawing_utils
model = load_model('mp_hand_gesture')
f = open('gesture.names', 'r')
classNames = f.read().split('\n')
f.close()
print(classNames)
cap = cv2.VideoCapture(0)
while True:
_, frame = cap.read()
x, y, c = frame.shape
frame = cv2.flip(frame, 1)
framergb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
result = hands.process(framergb)
className = ''
if result.multi_hand_landmarks:
landmarks = []
for handslms in result.multi_hand_landmarks:
for lm in handslms.landmark:
lmx = int(lm.x * x)
lmy = int(lm.y * y)
landmarks.append([lmx, lmy])
mpDraw.draw_landmarks(frame, handslms, mpHands.HAND_CONNECTIONS)
prediction = model.predict([landmarks])
classID = np.argmax(prediction)
className = classNames[classID]
cv2.putText(frame, className, (10, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0,0,255), 2, cv2.LINE_AA)
cv2.imshow("Output", frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()