-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvisualize.py
214 lines (189 loc) · 8.48 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import argparse
import os
import matplotlib
from matplotlib import pyplot as plt
from matplotlib import cm
import torch
from tqdm import tqdm
from libyana.exputils.argutils import save_args
from libyana.modelutils import freeze
from libyana.randomutils import setseeds
from meshreg.datasets import collate
from meshreg.datasets.queries import BaseQueries
from meshreg.models.meshregnet import MeshRegNet
from meshreg.netscripts import reloadmodel, get_dataset
from meshreg.neurender import fastrender
from meshreg.visualize import vizdemo
plt.switch_backend("agg")
def main(args):
setseeds.set_all_seeds(args.manual_seed)
# Initialize hosting
exp_id = f"checkpoints/{args.dataset}/" f"{args.com}"
# Initialize local checkpoint folder
print(f"Saving info about experiment at {exp_id}")
save_args(args, exp_id, "opt")
render_folder = os.path.join(exp_id, "images")
os.makedirs(render_folder, exist_ok=True)
# Load models
models = []
for resume in args.resumes:
opts = reloadmodel.load_opts(resume)
model, epoch = reloadmodel.reload_model(resume, opts)
models.append(model)
freeze.freeze_batchnorm_stats(model) # Freeze batchnorm
dataset, input_res = get_dataset.get_dataset(
args.dataset,
split=args.split,
meta={},
mode=args.mode,
use_cache=args.use_cache,
no_augm=True,
center_idx=opts["center_idx"],
sample_nb=None,
)
loader = torch.utils.data.DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
drop_last=False,
collate_fn=collate.meshreg_collate,
)
model = MeshRegNet(
mano_center_idx=opts["center_idx"],
mano_lambda_joints2d=opts["mano_lambda_joints2d"],
mano_lambda_joints3d=opts["mano_lambda_joints3d"],
mano_lambda_recov_joints3d=opts["mano_lambda_recov_joints3d"],
mano_lambda_recov_verts3d=opts["mano_lambda_recov_verts3d"],
mano_lambda_verts2d=opts["mano_lambda_verts2d"],
mano_lambda_verts3d=opts["mano_lambda_verts3d"],
mano_lambda_shape=opts["mano_lambda_shape"],
mano_use_shape=opts["mano_lambda_shape"] > 0,
mano_lambda_pose_reg=opts["mano_lambda_pose_reg"],
obj_lambda_recov_verts3d=opts["obj_lambda_recov_verts3d"],
obj_lambda_verts2d=opts["obj_lambda_verts2d"],
obj_lambda_verts3d=opts["obj_lambda_verts3d"],
obj_trans_factor=opts["obj_trans_factor"],
obj_scale_factor=opts["obj_scale_factor"],
mano_fhb_hand="fhbhands" in args.dataset,
)
fig = plt.figure(figsize=(10, 10))
save_results = {}
save_results["opt"] = dict(vars(args))
# Put models on GPU and evaluation mode
for model in models:
model.cuda()
model.eval()
render_step = 0
for batch in tqdm(loader):
all_results = []
# Compute model outputs
with torch.no_grad():
for model in models:
_, results, _ = model(batch)
all_results.append(results)
# Densely render error map for the meshes
for results in all_results:
render_results, cmap_obj = fastrender.comp_render(
batch, all_results, rotate=True, modes=("all", "obj", "hand"), max_val=args.max_val
)
for img_idx, img in enumerate(batch[BaseQueries.IMAGE]):
# Get rendered results for current image
render_ress = [res[img_idx] for res in render_results["all"]]
renderot_ress = [res[img_idx] for res in render_results["all_rotated"]]
# Initialize figure
fig.clf()
row_nb = len(models) + 1
col_nb = 3
axes = fig.subplots(row_nb, col_nb)
# Display cmap
cmap = cm.get_cmap("jet")
norm = matplotlib.colors.Normalize(vmin=0, vmax=1)
cax = fig.add_axes([0.27, 0.05, 0.5, 0.02])
cb = matplotlib.colorbar.ColorbarBase(
cax, cmap=cmap, norm=norm, ticks=[0, 1], orientation="horizontal"
)
cb.ax.set_xticklabels(["0", str(args.max_val * 100)])
cb.set_label("3D mesh error (cm)")
# Get masks for hand and object in current image
obj_masks = [res.cpu()[img_idx][:, :].sum(2).numpy() for res in render_results["obj"]]
hand_masks = [res.cpu()[img_idx][:, :].sum(2).numpy() for res in render_results["hand"]]
# Compute bounding boxes of masks
crops = [vizdemo.get_crop(render_res) for render_res in render_ress]
rot_crops = [vizdemo.get_crop(renderot_res) for renderot_res in renderot_ress]
# Get crop that encompasses the spatial extent of all results
crop = vizdemo.get_common_crop(crops)
rot_crop = vizdemo.get_common_crop(rot_crops)
for model_idx, (render_res, renderot_res) in enumerate(zip(render_ress, renderot_ress)):
# Draw input image with predicted contours in column 1
ax = vizdemo.get_axis(axes, row_nb, col_nb, model_idx, 0)
# Initialize white background and copy input image
viz_img = 255 * img.new_ones(max(img.shape), max(img.shape), 3)
viz_img[: img.shape[0], : img.shape[1], :3] = img
# Clamp so that displayed image values are in [0, 255]
render_res = render_res.clamp(0, 1)
renderot_res = renderot_res.clamp(0, 1)
obj_mask = obj_masks[model_idx] > 0
hand_mask = hand_masks[model_idx] > 0
# Draw hand and object contours
contoured_img = vizdemo.draw_contours(viz_img.numpy(), hand_mask, color=(0, 210, 255))
contoured_img = vizdemo.draw_contours(contoured_img, obj_mask, color=(255, 50, 50))
ax.imshow(contoured_img[crop[0] : crop[2], crop[1] : crop[3]])
# Image with rendering overlay
ax = vizdemo.get_axis(axes, row_nb, col_nb, model_idx, 1)
ax.set_title(args.model_names[model_idx])
ax.imshow(viz_img[crop[0] : crop[2], crop[1] : crop[3]])
ax.imshow(render_res[crop[0] : crop[2], crop[1] : crop[3]],)
# Render rotated
ax = vizdemo.get_axis(axes, row_nb, col_nb, model_idx, 2)
ax.imshow(renderot_res[rot_crop[0] : rot_crop[2], rot_crop[1] : rot_crop[3]])
fig.tight_layout()
save_path = os.path.join(render_folder, f"render{render_step:06d}.png")
fig.savefig(save_path)
print(f"Saved demo visualization at {save_path}")
render_step += 1
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--com", default="debug/", help="Prefix for experimental results")
parser.add_argument("--manual_seed", default=1, help="Fixed random seed")
# Dataset params
parser.add_argument("--dataset", default="fhbhands")
parser.add_argument("--split", default="test")
parser.add_argument(
"--mode", default="viz", help="[viz|full], 'viz' for selected dataset samples, 'full' for random ones"
)
parser.add_argument("--use_cache", action="store_true")
parser.add_argument(
"--max_val", default=0.1, type=float, help="Max value (in meters) for colormap error range"
)
parser.add_argument("--batch_size", default=4, type=int)
parser.add_argument("--workers", default=0, type=int)
# Model parameters
parser.add_argument(
"--resumes",
nargs="+",
default=[
"releasemodels/fphab/hands_and_objects/checkpoint_200.pth",
"releasemodels/fphab/warp_effect/no_consist/frac_6.3e-03/checkpoint_1200.pth",
"releasemodels/fphab/warp_effect/with_consist/frac_6.3e-03/checkpoint_1200.pth",
],
)
parser.add_argument(
"--model_names",
nargs="+",
default=[
"Supervised data: 100%",
"Supervised data: 0.65%",
"Supervised data: 0.65% + photometric consistency",
],
)
# Loss parameters
parser.add_argument("--criterion2d", choices=["l2", "l1", "smooth_l1"], default="l2")
parser.add_argument(
"--display_freq", type=int, default=500, help="How often to generate visualizations (training steps)"
)
args = parser.parse_args()
args.model_names = ["Ground Truth"] + args.model_names
for key, val in sorted(vars(args).items(), key=lambda x: x[0]):
print(f"{key}: {val}")
main(args)