-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
60 lines (45 loc) · 1.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torch.nn import functional as F
def _top_k_p_filter(logits: torch.Tensor, top_k: int = 0, top_p: float = 0.0):
"""先取 top_k, 再取 top_p, 每一步将不符合的置为 -inf
Args:
logits (torch.Tensor): (bs, n_vocab)
top_k (int, optional): Defaults to 0.
top_p (float, optional): Defaults to 0..
"""
if top_k > 0:
top_k_val = torch.topk(logits, min(top_k, logits.shape[ -1 ]), dim=-1)[ 0 ]
logits[ logits < top_k_val[ :, -1 ].unsqueeze(-1) ] = float("-inf")
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
# 计算累计和
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
filter = cumulative_probs > top_p
filter[ :, 1: ] = filter[ :, :-1 ].clone()
filter[ :, 0 ] = 0
indices_to_remove = filter.scatter(1, sorted_indices, filter)
logits[ indices_to_remove ] = float("-inf")
return logits
def norm_logits(
logits: torch.Tensor, top_k: int = 0, top_p: float = 0.0, temperature: float = 1.0
):
"""将 logits 先后选取 top_k 和 top_p 后取 softmax
Args:
logits (torch.Tensor): (bs, n_vocab)
top_k (int, optional): Defaults to 0.
top_p (float, optional): Defaults to 0..
temperature (float, optional): Defaults to 1..
Returns:
probs: (bs, n_vocab)
"""
logits = _top_k_p_filter(logits / temperature, top_k, top_p)
return F.softmax(logits, dim=-1)
def sample(probs: torch.Tensor, n_smp=1):
return torch.multinomial(probs, n_smp)
def max_fn(x: torch.Tensor):
re = F.relu(x)
return re / re.sum(dim=-1, keepdim=True)
def blue_print(s):
print(f"\033[1;34m{s}\033[0m")
def green_print(s):
print(f"\033[1;32m{s}\033[0m")