-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathmain.py
169 lines (144 loc) · 5.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""Run Atari Environment with DQN."""
import os
import argparse
import torch
import model
import dqn
import utils
from env import Environment
from policy import GreedyEpsilonPolicy, LinearDecayGreedyEpsilonPolicy
from core import ReplayMemory
from train import train, evaluate
def main():
parser = argparse.ArgumentParser(description='Run DQN on Atari')
parser.add_argument('--rom', default='roms/breakout.bin',
help='path to rom')
parser.add_argument('--seed', default=10001, type=int,
help='Random seed')
parser.add_argument('--q_net', default='', type=str,
help='load pretrained q net')
parser.add_argument('--gamma', default=0.99, type=float,
help='discount factor')
parser.add_argument('--num_iters', default=int(5e7), type=int)
parser.add_argument('--replay_buffer_size', default=int(1e6), type=int)
parser.add_argument('--frame_skip', default=4, type=int,
help='num frames for repeated action')
parser.add_argument('--num_frames', default=4, type=int,
help='num stacked frames')
parser.add_argument('--frame_size', default=84, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--frames_per_update', default=4, type=int)
parser.add_argument('--frames_per_sync', default=32000, type=int)
# for using eps-greedy exploration
parser.add_argument('--train_start_eps', default=1.0, type=float)
parser.add_argument('--train_final_eps', default=0.01, type=float)
parser.add_argument('--train_eps_num_steps', default=int(1e6), type=int)
# for noisy net
parser.add_argument('--noisy_net', action='store_true')
parser.add_argument('--sigma0', default=0.4, type=float)
parser.add_argument('--eval_eps', default=0.001, type=float)
parser.add_argument('--frames_per_eval', default=int(5e5), type=int)
parser.add_argument('--burn_in_frames', default=200000, type=int)
parser.add_argument('--no_op_start', default=30, type=int)
parser.add_argument('--dev', action='store_true')
parser.add_argument('--output', default='exps/', type=str)
parser.add_argument('--suffix', default='', type=str)
parser.add_argument('--double_dqn', action='store_true')
parser.add_argument('--dueling', action='store_true')
parser.add_argument('--dist', action='store_true')
parser.add_argument('--num_atoms', default=51, type=int)
parser.add_argument('--net', default=None, type=str)
args = parser.parse_args()
if args.dev:
args.burn_in_frames = 500
args.frames_per_eval = 5000
args.output = 'devs/'
game_name = args.rom.split('/')[-1].split('.')[0]
model_name = []
if args.noisy_net:
model_name.append('noisy')
if args.dist:
model_name.append('dist')
if args.dueling:
model_name.append('dueling')
else:
model_name.append('basic')
if args.double_dqn:
model_name.append('ddqn')
if args.suffix:
model_name.append(args.suffix)
model_name = '_'.join(model_name)
args.output = os.path.join(args.output, game_name, model_name)
utils.Config(vars(args)).dump(os.path.join(args.output, 'configs.txt'))
return args
if __name__ == '__main__':
args = main()
torch.backends.cudnn.benckmark = True
utils.set_all_seeds(args.seed)
train_env = Environment(
args.rom,
args.frame_skip,
args.num_frames,
args.frame_size,
args.no_op_start + 1,
utils.large_randint(),
True)
eval_env = Environment(
args.rom,
args.frame_skip,
args.num_frames,
args.frame_size,
args.no_op_start + 1,
utils.large_randint(),
False)
if args.dist:
assert not args.dueling, 'not supported yet.'
q_net = model.build_distributional_basic_network(
args.num_frames,
args.frame_size,
train_env.num_actions,
args.num_atoms,
args.noisy_net,
args.sigma0,
args.net)
q_net.cuda()
agent = dqn.DistributionalDQNAgent(
q_net, args.double_dqn, train_env.num_actions, args.num_atoms, -10, 10)
else:
if args.dueling:
q_net_builder = model.build_dueling_network
else:
q_net_builder = model.build_basic_network
q_net = q_net_builder(
args.num_frames,
args.frame_size,
train_env.num_actions,
args.noisy_net,
args.sigma0,
args.net)
q_net.cuda()
agent = dqn.DQNAgent(q_net, args.double_dqn, train_env.num_actions)
if args.noisy_net:
train_policy = GreedyEpsilonPolicy(0, agent)
else:
train_policy = LinearDecayGreedyEpsilonPolicy(
args.train_start_eps,
args.train_final_eps,
args.train_eps_num_steps,
agent)
eval_policy = GreedyEpsilonPolicy(args.eval_eps, agent)
replay_memory = ReplayMemory(args.replay_buffer_size)
replay_memory.burn_in(train_env, agent, args.burn_in_frames)
evaluator = lambda logger: evaluate(eval_env, eval_policy, 10, logger)
train(agent,
train_env,
train_policy,
replay_memory,
args.gamma,
args.batch_size,
args.num_iters,
args.frames_per_update,
args.frames_per_sync,
args.frames_per_eval,
evaluator,
args.output)