@@ -243,10 +243,10 @@ class Quasisymmetry(Optimizable):
243243 Args:
244244 boozer: A Boozer object on which the calculation will be based.
245245 s: The normalized toroidal magnetic flux for the flux surface to analyze. Should be in the range [0, 1].
246- m : The poloidal mode number of the symmetry you want to achive.
247- The departure from symmetry B(m * theta - nfp * n * zeta) will be reported.
248- n : The toroidal mode number of the symmetry you want to achieve.
249- The departure from symmetry B(m * theta - nfp * n * zeta) will be reported.
246+ helicity_m : The poloidal mode number of the symmetry you want to achive.
247+ The departure from symmetry ``B(helicity_m * theta - nfp * helicity_n * zeta)`` will be reported.
248+ helicity_n : The toroidal mode number of the symmetry you want to achieve.
249+ The departure from symmetry ``B(helicity_m * theta - nfp * helicity_n * zeta)`` will be reported.
250250 normalization: A uniform normalization applied to all bmnc harmonics.
251251 If ``"B00"``, the symmetry-breaking modes will be divided by the m=n=0 mode amplitude
252252 on the same surface. If ``"symmetric"``, the symmetry-breaking modes will be
@@ -258,17 +258,17 @@ class Quasisymmetry(Optimizable):
258258 def __init__ (self ,
259259 boozer : Boozer ,
260260 s : Union [float , Iterable [float ]],
261- m : int ,
262- n : int ,
261+ helicity_m : int ,
262+ helicity_n : int ,
263263 normalization : str = "B00" ,
264264 weight : str = "even" ) -> None :
265265 """
266266 Constructor
267267
268268 """
269269 self .boozer = boozer
270- self .m = m
271- self .n = n
270+ self .helicity_m = helicity_m
271+ self .helicity_n = helicity_n
272272 self .normalization = normalization
273273 self .weight = weight
274274
@@ -308,23 +308,23 @@ def J(self) -> np.ndarray:
308308 xm = self .boozer .bx .xm_b
309309 xn = self .boozer .bx .xn_b / self .boozer .bx .nfp
310310
311- if self .m != 0 and self .m != 1 :
311+ if self .helicity_m != 0 and self .helicity_m != 1 :
312312 raise ValueError ("m for quasisymmetry should be 0 or 1." )
313313
314314 # Find the indices of the symmetric modes:
315- if self .n == 0 :
315+ if self .helicity_n == 0 :
316316 # Quasi-axisymmetry
317317 symmetric = (xn == 0 )
318318
319- elif self .m == 0 :
319+ elif self .helicity_m == 0 :
320320 # Quasi-poloidal symmetry
321321 symmetric = (xm == 0 )
322322
323323 else :
324324 # Quasi-helical symmetry
325- symmetric = (xm * self .n + xn * self .m == 0 )
326- # Stellopt takes the "and" of this with mod(xm, self.m ),
327- # which does not seem necessary since self.m must be 1 to
325+ symmetric = (xm * self .helicity_n + xn * self .helicity_m == 0 )
326+ # Stellopt takes the "and" of this with mod(xm, self.helicity_m ),
327+ # which does not seem necessary since self.helicity_m must be 1 to
328328 # get here.
329329 nonsymmetric = np .logical_not (symmetric )
330330
0 commit comments