You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/geo.rst
+15-15Lines changed: 15 additions & 15 deletions
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -53,15 +53,15 @@ the derivative of quantities such as curvature (via
53
53
``Curve.dkappa_by_dcoeff()``) or torsion (via
54
54
``Curve.dtorsion_by_dcoeff()``).
55
55
56
-
A number of quantities are implemented in
57
-
:obj:`simsopt.geo.curveobjectives` and are computed on a
56
+
A number of objective functions are available in
57
+
:obj:`simsopt.geo` and are computed on a
58
58
:obj:`simsopt.geo.Curve`:
59
59
60
-
- ``CurveLength``: computes the length of the ``Curve``.
61
-
- ``LpCurveCurvature``: computes a penalty based on the :math:`L_p` norm of the curvature on a curve.
62
-
- ``LpCurveTorsion``: computes a penalty based on the :math:`L_p` norm of the torsion on a curve.
63
-
- ``CurveCurveDistance``: computes a penalty term on the minimum distance between a set of curves.
64
-
- ``CurveSurfaceDistance``: computes a penalty term on the minimum distance between a set of curves and a surface.
60
+
- :obj:`~simsopt.geo.CurveLength`: computes the length of the ``Curve``.
61
+
- :obj:`~simsopt.geo.LpCurveCurvature`: computes a penalty based on the :math:`L_p` norm of the curvature on a curve.
62
+
- :obj:`~simsopt.geo.LpCurveTorsion`: computes a penalty based on the :math:`L_p` norm of the torsion on a curve.
63
+
- :obj:`~simsopt.geo.CurveCurveDistance`: computes a penalty term on the minimum distance between a set of curves.
64
+
- :obj:`~simsopt.geo.CurveSurfaceDistance`: computes a penalty term on the minimum distance between a set of curves and a surface.
65
65
66
66
The value of the quantity and its derivative with respect to the curve
67
67
dofs can be obtained by calling e.g., ``CurveLength.J()`` and
@@ -152,10 +152,10 @@ the :obj:`~simsopt.geo.Curve` class:
152
152
- ``Surface.second_fund_form()``: returns a ``(n_phi, n_theta, 3)`` array containing :math:`[\hat{\textbf{n}}(\phi_i, \theta_j) \cdot\partial^2_{\phi,\phi} \Gamma(\phi_i, \theta_j), \hat{\textbf{n}}(\phi_i, \theta_j) \cdot\partial^2_{\phi,\theta} \Gamma(\phi_i, \theta_j), \hat{\textbf{n}}(\phi_i, \theta_j) \cdot\partial^2_{\theta,\theta} \Gamma(\phi_i, \theta_j)]` for :math:`i\in\{1, \ldots, n_\phi\}, j\in\{1, \ldots, n_\theta\}` where :math:`\hat{\textbf{n}}` is the unit normal.
153
153
- ``Surface.surface_curvatures()``: returns a ``(n_phi, n_theta, 4)`` array containing :math:`[H(\phi_i, \theta_j),K(\phi_i, \theta_j),\kappa_1(\phi_i, \theta_j),\kappa_2(\phi_i, \theta_j)]` for :math:`i\in\{1, \ldots, n_\phi\}, j\in\{1, \ldots, n_\theta\}` where :math:`H` is the mean curvature, :math:`K` is the Gaussian curvature, and :math:`\kappa_{1,2}` are the principal curvatures with :math:`\kappa_1>\kappa_2`.
154
154
155
-
A number of quantities are implemented in :obj:`simsopt.geo.surfaceobjectives` and are computed on a :obj:`simsopt.geo.Surface`:
155
+
A number of objective functions related to surfaces are available in :obj:`simsopt.geo`:
156
156
157
-
- ``ToroidalFlux``: computes the flux through a toroidal cross section of a ``Surface``.
158
-
- ``PrincipalCurvature``: computes a metric which penalizes large values of the principal curvatures of a given ``Surface``.
157
+
- :obj:`~simsopt.geo.ToroidalFlux`: computes the flux through a toroidal cross section of a ``Surface``.
158
+
- :obj:`~simsopt.geo.PrincipalCurvature`: computes a metric which penalizes large values of the principal curvatures of a given ``Surface``.
159
159
160
160
The value of the quantity and its derivative with respect to the surface dofs can be obtained by calling e.g., ``ToroidalFlux.J()`` and ``ToroidalFlux.dJ_dsurfacecoefficients()``.
161
161
@@ -185,12 +185,12 @@ plotting engine by passing the ``engine`` keyword argument, e.g. if
185
185
can use the ``close`` argument to control whether segments are drawn
186
186
between the last quadrature point and the first. For these and other
187
187
options, see the API documentation for
188
-
:func:`simsopt.geo.curve.Curve.plot()` and
189
-
:func:`simsopt.geo.surface.Surface.plot()`.
188
+
:func:`simsopt.geo.Curve.plot()` and
189
+
:func:`simsopt.geo.Surface.plot()`.
190
190
191
191
If you have multiple curve and/or surface objects, a convenient way to
192
192
plot them together on the same axes is the function
193
-
:func:`simsopt.geo.plotting.plot()`, which accepts a list of objects as
193
+
:func:`simsopt.geo.plot()`, which accepts a list of objects as
194
194
its argument. Any keywords passed to this function are passed to the
195
195
``.plot()`` methods of the individual objects, so you may wish to pass
196
196
keywords such as ``engine`` or ``close``. Alternatively, you can also
@@ -201,6 +201,6 @@ It is also possible to export curve and surface objects in VTK format,
201
201
so they can be viewed in Paraview. This functionality requires the
202
202
python package ``pyevtk``, which can be installed via ``pip install
203
203
pyevtk``. A list of curve objects can be exported using the function
204
-
:func:`simsopt.geo.curve.curves_to_vtk()`. To export a VTK file for a
204
+
:func:`simsopt.geo.curves_to_vtk()`. To export a VTK file for a
205
205
surface, call the ``.to_vtk(filename)`` function of the object. See
206
-
:func:`simsopt.geo.surface.Surface.to_vtk()` for more details.
206
+
:func:`simsopt.geo.Surface.to_vtk()` for more details.
0 commit comments