-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathTCS34725.h
294 lines (252 loc) · 8.26 KB
/
TCS34725.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#pragma once
#ifndef TCS34725_H
#define TCS34725_H
#include <Arduino.h>
#ifdef TEENSYDUINO
#include <i2c_t3.h>
#else
#include <Wire.h>
#endif
template <typename WireType>
class TCS34725_
{
static constexpr uint8_t I2C_ADDR {0x29};
static constexpr uint8_t ID_REG_PART_NUMBER {0x44};
static constexpr uint8_t COMMAND_BIT {0x80};
static constexpr float INTEGRATION_CYCLES_MIN {1.f};
static constexpr float INTEGRATION_CYCLES_MAX {256.f};
static constexpr float INTEGRATION_TIME_MS_MIN {2.4f};
static constexpr float INTEGRATION_TIME_MS_MAX {INTEGRATION_TIME_MS_MIN * INTEGRATION_CYCLES_MAX};
public:
enum class Reg : uint8_t
{
ENABLE = 0x00,
ATIME = 0x01,
WTIME = 0x03,
AILTL = 0x04,
AILTH = 0x05,
AIHTL = 0x06,
AIHTH = 0x07,
PERS = 0x0C,
CONFIG = 0x0D,
CONTROL = 0x0F,
ID = 0x12,
STATUS = 0x13,
CDATAL = 0x14,
CDATAH = 0x15,
RDATAL = 0x16,
RDATAH = 0x17,
GDATAL = 0x18,
GDATAH = 0x19,
BDATAL = 0x1A,
BDATAH = 0x1B,
};
enum class Mask : uint8_t
{
ENABLE_AIEN = 0x10,
ENABLE_WEN = 0x08,
ENABLE_AEN = 0x02,
ENABLE_PON = 0x01,
STATUS_AINT = 0x10,
STATUS_AVALID = 0x01
};
enum class Gain : uint8_t { X01, X04, X16, X60 };
struct Color { float r, g, b; };
union RawData
{
struct
{
uint16_t c;
uint16_t r;
uint16_t g;
uint16_t b;
};
uint8_t raw[sizeof(uint16_t) * 4];
};
bool attach(WireType& w = Wire)
{
wire = &w;
uint8_t x = read8(Reg::ID);
if (x != ID_REG_PART_NUMBER) return false;
power(true);
interrupt(true); // use to detect availability (available())
persistence(0x00); // every RGBC cycle generates an interrupt
return true;
}
void power(bool b)
{
if (b)
{
write8(Reg::ENABLE, (uint8_t)Mask::ENABLE_PON);
delay(3); // 2.4 ms must pass after PON is asserted before an RGBC can be initiated
write8(Reg::ENABLE, (uint8_t)Mask::ENABLE_PON | (uint8_t)Mask::ENABLE_AEN);
}
else
{
uint8_t val = read8(Reg::ENABLE);
write8(Reg::ENABLE, val & ~((uint8_t)Mask::ENABLE_PON | (uint8_t)Mask::ENABLE_AEN));
}
}
void enableColorTempAndLuxCalculation(bool b) { b_ct_lux_calc = b; }
void integrationTime(float ms) // 2.4 - 614.4 ms
{
if (ms < INTEGRATION_TIME_MS_MIN) ms = INTEGRATION_TIME_MS_MIN;
if (ms > INTEGRATION_TIME_MS_MAX) ms = INTEGRATION_TIME_MS_MAX;
uint8_t data = (uint8_t)(256.f - ms / INTEGRATION_TIME_MS_MIN);
write8(Reg::ATIME, data);
atime = data;
integration_time = ms;
}
void gain(Gain g)
{
write8(Reg::CONTROL, (uint8_t)g);
switch (g)
{
case Gain::X01: gain_value = 1.f; break;
case Gain::X04: gain_value = 4.f; break;
case Gain::X16: gain_value = 16.f; break;
case Gain::X60: gain_value = 60.f; break;
default: gain_value = 1.f; break;
}
}
void scale(float s) { scaling = s; }
// The Glass Attenuation (FA) factor used to compensate for lower light
// levels at the device due to the possible presence of glass. The GA is
// the inverse of the glass transmissivity (T), so GA = 1/T. A transmissivity
// of 50% gives GA = 1 / 0.50 = 2. If no glass is present, use GA = 1.
// See Application Note: DN40-Rev 1.0 – Lux and CCT Calculations using
// ams Color Sensors for more details.
void glassAttenuation(float v) { if (v < 1.f) v = 1.f; glass_attenuation = v; }
void persistence(uint16_t data) { write8(Reg::PERS, data); }
bool available()
{
bool b = read8(Reg::STATUS) & (uint8_t)Mask::STATUS_AINT;
if (b)
{
update();
if (b_ct_lux_calc) calcTemperatureAndLuxDN40();
clearInterrupt();
}
return b;
}
Color color() const
{
Color clr;
if (raw_data.c == 0) clr.r = clr.g = clr.b = 0;
else
{
clr.r = pow((float)raw_data.r / (float)raw_data.c, scaling) * 255.f;
clr.g = pow((float)raw_data.g / (float)raw_data.c, scaling) * 255.f;
clr.b = pow((float)raw_data.b / (float)raw_data.c, scaling) * 255.f;
if (clr.r > 255.f) clr.r = 255.f;
if (clr.g > 255.f) clr.g = 255.f;
if (clr.b > 255.f) clr.b = 255.f;
}
return clr;
}
const RawData& raw() const { return raw_data; }
float lux() const { return lx; }
float colorTemperature() const { return color_temp; }
void interrupt(bool b)
{
uint8_t r = read8(Reg::ENABLE);
if (b) r |= (uint8_t)Mask::ENABLE_AIEN;
else r &= ~(uint8_t)Mask::ENABLE_AIEN;
write8(Reg::ENABLE, r);
}
void clearInterrupt()
{
wire->beginTransmission(I2C_ADDR);
wire->write(COMMAND_BIT | 0x66);
wire->endTransmission();
}
void write8(Reg reg, uint8_t value)
{
wire->beginTransmission(I2C_ADDR);
wire->write(COMMAND_BIT | (uint8_t)reg);
wire->write(value);
wire->endTransmission();
}
uint8_t read8(Reg reg)
{
wire->beginTransmission(I2C_ADDR);
wire->write(COMMAND_BIT | (uint8_t)reg);
wire->endTransmission();
wire->requestFrom(I2C_ADDR, (uint8_t)1);
return wire->read();
}
uint16_t read16(Reg reg)
{
uint16_t x;
uint16_t t;
wire->beginTransmission(I2C_ADDR);
wire->write(COMMAND_BIT | (uint8_t)reg);
wire->endTransmission();
wire->requestFrom(I2C_ADDR, (uint8_t)2);
t = wire->read();
x = wire->read();
x <<= 8;
x |= t;
return x;
}
private:
void update()
{
wire->beginTransmission(I2C_ADDR);
wire->write(COMMAND_BIT | (uint8_t) Reg::CDATAL);
wire->endTransmission();
wire->requestFrom(I2C_ADDR, sizeof(RawData));
for (uint8_t i = 0; i < sizeof(RawData); i++)
raw_data.raw[i] = wire->read();
}
// https://github.com/adafruit/Adafruit_CircuitPython_TCS34725/blob/master/adafruit_tcs34725.py
void calcTemperatureAndLuxDN40()
{
// Device specific values (DN40 Table 1 in Appendix I)
const float GA = glass_attenuation; // Glass Attenuation Factor
static const float DF = 310.f; // Device Factor
static const float R_Coef = 0.136f; //
static const float G_Coef = 1.f; // used in lux computation
static const float B_Coef = -0.444f; //
static const float CT_Coef = 3810.f; // Color Temperature Coefficient
static const float CT_Offset = 1391.f; // Color Temperatuer Offset
// Analog/Digital saturation (DN40 3.5)
float saturation = (256 - atime > 63) ? 65535 : 1024 * (256 - atime);
// Ripple saturation (DN40 3.7)
if (integration_time < 150)
saturation -= saturation / 4;
// Check for saturation and mark the sample as invalid if true
if (raw_data.c >= saturation)
return;
// IR Rejection (DN40 3.1)
float sum = raw_data.r + raw_data.g + raw_data.b;
float c = raw_data.c;
float ir = (sum > c) ? ((sum - c) / 2.f) : 0.f;
float r2 = raw_data.r - ir;
float g2 = raw_data.g - ir;
float b2 = raw_data.b - ir;
// Lux Calculation (DN40 3.2)
float g1 = R_Coef * r2 + G_Coef * g2 + B_Coef * b2;
float cpl = (integration_time * gain_value) / (GA * DF);
lx = g1 / cpl;
// CT Calculations (DN40 3.4)
color_temp = CT_Coef * b2 / r2 + CT_Offset;
}
WireType* wire;
float scaling {2.5f};
// for lux & temperature
bool b_ct_lux_calc {true};
float lx;
float color_temp;
RawData raw_data;
float gain_value {1.f};
uint8_t atime {0xFF};
float integration_time {2.4f}; // [ms]
float glass_attenuation {1.f};
};
#ifdef TEENSYDUINO
using TCS34725 = TCS34725_<i2c_t3>;
#else
using TCS34725 = TCS34725_<TwoWire>;
#endif
#endif // TCS34725_H