-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathntqn.py
1301 lines (1098 loc) · 47.4 KB
/
ntqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
def bfgs_e(func, grad, x0, eps_f=0., eps_g=0., callback=None, options=None):
"""BFGS-E: Noise-Tolerant BFGS/BFGS with Errors
A noise-tolerant (L-)BFGS algorithm that minimizes an objective function with error in its function and gradient
evaluations. Requires knowledge of the noise level in both the function and gradient. Method defaults to using
limited memory.
Parameters
----------
func : callable
The objective function to be minimized.
``func(x) -> float``
where ``x`` is a 1-D array with shape (n,).
grad : callable
Method for computing the gradient vector.
``grad(x) -> array_like, shape (n,)``
where ``x`` is a 1-D array with shape (n,).
x0 : ndarray, shape (n,)
Initial guess.
eps_f : {float, callable}, optional
Noise level of function. If callable, should return float. (Default: 0)
eps_g : {float, ndarray, callable}, optional
Noise level of the gradient. Required if grad is callable. If float or callable that returns float, assumes
2-norm bound on the gradient noise. If ndarray or callable that returns ndarray, eps_g must be have shape (n,)
and assumes bounds on the noise with respect to each component. (Default: 0)
callback : callable, optional
An optional user-supplied function, called after each iteration. Called as ``callback(x)``, where ``x`` is the
current iterate.
options : dict, optional
Options passed to the solver. It optionally contains:
max_iter : int, optional
Maximum number of iterations. (Default: 1000)
max_feval : int, optional
Maximum number of function evaluations. (Default: max_iter * n)
max_geval : int, optional
Maximum number of gradient evaluations. (Default: 3000)
max_ls_iter : int, optional
Maximum number of line search trials in split phase. (Default: 20)
split_iter : int, optional
Maximum number of line search trials before triggering split phase. (Default: 30)
term_iter : int, optional
Maximum number of iterations attempting to reduce observed objective value before terminating.
(Default: 5)
c1 : float, optional
Constant for Armijo condition. (Default: 1e-4)
c2 : float, optional
Constant for Wolfe condition. (Default: 0.9)
c3 : float, optional
Constant for noise control condition. (Default: 0.5)
tol : float, optional
Desired gradient tolerance acceptable for convergence. (Default: 1e-5)
alpha_init : float, optional
Initial steplength. (Default: 1)
beta_init : float, optional
Initial lengthening parameter. (Default: 1)
H_init: ndarray, optional
Initial BFGS matrix as 2-D ndarray with shape (n,n). (Default: I)
qn_hist_size : int, optional
Length of history for curvature pairs for L-BFGS. (Default: 10)
f_hist_size : int, optional
Length of history for tracking function value. (Default: 10)
mu_hist_size : int, optional
Length of history for strong convexity parameter heuristic. (Default: 10)
display : int, optional
Display level. (Default: 2)
0 : no display
1 : display summary
2 : display iterations
3 : display inner iterations (from line search) and outer iterations
terminate : int, optional
Determines termination criteria. (Default: 3)
0 : do not terminate until iteration, function evaluation, or gradient evaluation
is reached
1 : terminate when one no more progress is made due to numerical error or no more progress
is made on the observed function value
2 : in addition to the above, terminate when one reaches the noise level
3 : in addition to the above, terminate when one satisfies the desired gradient tolerance
Returns
-------
x_k : ndarray
Final solution.
f_k : float
Final objective value `func(x_k)`.
iter : int
Number of iterations.
func_evals : int
Number of function evaluations.
grad_evals : int
Number of gradient evaluations.
flag : int
Flag for termination.
0 : Converged to desired gradient tolerance.
1 : Reached maximum number of iterations.
2 : Reached maximum number of function evaluations.
3 : Reached maximum number of gradient evaluations.
4 : Reached noise level of the function.
5 : Reached noise level of the gradient.
6 : No more progress made after term_count iterations.
7 : No more progress due to numerical issues.
results : dict
Dictionary containing:
f_ks : ndarray
History of function values from each iteration with shape (iter,).
norm_gks : ndarray
History of gradient norms from each iteration with shape (iter,).
func_evals : ndarray
History of cumulative function evaluations from each iteration with shape (iter,).
grad_evals : ndarray
History of cumulative gradient evaluations from each iteration with shape (iter,).
alphas : ndarray
History of steplengths with shape (iter,).
betas : ndarray
History of lengthening parameters with shape (iter,).
mus : ndarray
History of strong convexity parameter estimates with shape (iter,).
Notes
-----
. The signature is designed to be similar to the `minimize` function in SciPy.
. Uses a generalized form of the noise-tolerant Armijo-Wolfe line search as designed in [1], consisting of an
initial and split phase.
. The noise control condition employed in the line search can also handle component-wise noise levels of the
gradient, which generalizes the work done in [1].
. Can also handle changing levels of noise or iterate-dependent noise levels by passing callable noise level
functions.
Examples
--------
>>> from scipy.optimize import rosen
>>> from ntqn import bfgs_e
>>> x0 = np.array([-1.25, 1.])
>>> x_opt, f_opt, iters, f_evals, g_evals, flag, results = bfgs_e(rosen, x0)
References
----------
.. [1] Hao-Jun Michael Shi, Yuchen Xie, Richard Byrd, and Jorge Nocedal.
"A Noise-Tolerant Quasi-Newton Algorithm for Unconstrained Optimization."
.. [2] Yuchen Xie, Richard Byrd, and Jorge Nocedal.
"Analysis of the BFGS Method with Errors."
SIAM Journal on Optimization 30.1 (2020): 182-209.
Authors
-------
Hao-Jun Michael Shi ([email protected])
Yuchen Xie ([email protected])
Department of Industrial Engineering and Management Sciences
Northwestern University
"""
# initialize values
x_k = np.copy(x0)
n = len(x_k)
iter = 0
func_evals = 0
grad_evals = 0
armijo_fails = 0
wolfe_fails = 0
alpha = 0.
beta = 0.
# construct options dict if not given
if not options:
options = {}
# set options to default if not given
if 'max_iter' not in options.keys():
options['max_iter'] = 1000
if 'max_feval' not in options.keys():
options['max_feval'] = options['max_iter'] * n
if 'max_geval' not in options.keys():
options['max_geval'] = 3000
if 'max_ls_iter' not in options.keys():
options['max_ls_iter'] = 20
if 'split_iter' not in options.keys():
options['split_iter'] = 30
if 'term_iter' not in options.keys():
options['term_iter'] = 5
if 'c1' not in options.keys():
options['c1'] = 1e-4
if 'c2' not in options.keys():
options['c2'] = 0.9
if 'c3' not in options.keys():
options['c3'] = 0.5
if 'tol' not in options.keys():
options['tol'] = 1e-5
if 'alpha_init' not in options.keys():
options['alpha_init'] = 1.0
if 'beta_init' not in options.keys():
options['beta_init'] = 1.0
if 'qn_hist_size' not in options.keys():
options['qn_hist_size'] = 10
if 'f_hist_size' not in options.keys():
options['f_hist_size'] = 10
if 'mu_hist_size' not in options.keys():
options['mu_hist_size'] = 10
if 'display' not in options.keys():
options['display'] = 2
if 'terminate' not in options.keys():
options['terminate'] = 3
verbose = (options['display'] >= 3)
# initialize BFGS matrix or L-BFGS memory
if options['qn_hist_size'] < np.inf:
qn_hist = []
qn_init = 1.
else:
if 'H_init' in options.keys():
H = np.copy(options['H_init'])
else:
H = np.identity(n)
# assumes gradient is not noisy if passed without specifying eps_g or eps_f = 0
if (not np.any(eps_g) and callable(grad)) or eps_f == 0.:
eps_g = 0.
# track average function over window
f_avg = np.inf
f_hist = np.array([])
# track strong convexity parameter for heuristic
mu = np.inf
mu_hist = np.array([])
# initialize results dict
results = {'f_ks': np.array([]), 'norm_gks': np.array([]), 'func_evals': np.array([]), 'grad_evals': np.array([]),
'alphas': np.array([]), 'betas': np.array([]), 'mus': np.array([]), 'eps_fs': np.array([]),
'eps_gs': np.array([]), 'norm_pks': np.array([])}
# flag for determining success
flag = 1
term_count = 0
# get machine precision
eps_m = np.finfo(np.float).eps
# calculate initial function and gradient values
f_k = func(x_k)
f_hist = np.append(f_hist, f_k)
func_evals += 1
# compute gradient
g_k = grad(x_k)
grad_evals += 1
# norm_gk = np.linalg.norm(g_k, ord=np.inf)
norm_gk = np.linalg.norm(g_k)
norm_pk = np.copy(norm_gk)
# compute function and gradient error bound
if callable(eps_f):
eps_fk = eps_f(x_k)
else:
eps_fk = np.copy(eps_f)
if callable(eps_g):
eps_gk = eps_g(x_k)
else:
eps_gk = np.copy(eps_g)
# print initial header
if options['display'] >= 2:
print('=======================================================================================================================')
print('Solving with Noise-Tolerant BFGS Method')
# main loop
while iter < options['max_iter']:
# perform callback
if callback is not None:
callback(x_k)
# print header
if options['display'] >= 2 and iter % 25 == 0:
print('-----------------------------------------------------------------------------------------------------------------------')
print(' Iter | F | ||g|| | F Evals | G Evals | alpha | beta | mu ')
print('-----------------------------------------------------------------------------------------------------------------------')
# print iteration info
if options['display'] >= 2:
print(' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e '
% (iter, f_k, norm_gk, func_evals, grad_evals, alpha, beta, mu))
# store values
results['f_ks'] = np.append(results['f_ks'], f_k)
results['norm_gks'] = np.append(results['norm_gks'], norm_gk)
results['func_evals'] = np.append(results['func_evals'], func_evals)
results['grad_evals'] = np.append(results['grad_evals'], grad_evals)
results['alphas'] = np.append(results['alphas'], alpha)
results['betas'] = np.append(results['betas'], beta)
results['mus'] = np.append(results['mus'], mu)
results['eps_fs'] = np.append(results['eps_fs'], eps_fk)
results['eps_gs'] = np.append(results['eps_gs'], eps_gk)
results['norm_pks'] = np.append(results['norm_pks'], norm_pk)
# compute (L-)BFGS search direction
if options['qn_hist_size'] < np.inf:
q = - g_k
m = len(qn_hist)
a = np.zeros(m)
for i in reversed(range(m)):
s, y, rho = qn_hist[i]
a[i] = rho * np.dot(s, q)
q = q - a[i] * y
r = qn_init * q
for i in range(m):
s, y, rho = qn_hist[i]
b = rho * np.dot(y, r)
r = r + (a[i] - b) * s
p_k = r
else:
p_k = -np.dot(H, g_k)
norm_pk = np.linalg.norm(p_k)
# perform line search
f_old = f_k
alpha, beta, mu_hat, f_k, g_new, eps_fk, eps_gk, ls_fevals, ls_gevals, armijo_flag, wolfe_flag, split_flag = \
_line_search_nt_wolfe(func, grad, x_k, p_k, eps_f=eps_f, eps_g=eps_g, f_k=f_k, g_k=g_k,
alpha_init=options['alpha_init'], beta_init=options['beta_init'], mu=mu,
c1=options['c1'], c2=options['c2'], c3=options['c3'],
split_iter=options['split_iter'], max_ls_iter=options['max_ls_iter'], verbose=verbose)
func_evals += ls_fevals
grad_evals += ls_gevals
x_old = np.copy(x_k)
# if Armijo condition is satisfied, perform update
if armijo_flag:
x_k = x_k + alpha * p_k
# track history of function values and compute average
f_hist = np.append(f_hist, f_k)
if f_hist.shape[0] > options['f_hist_size']:
f_hist = f_hist[1:]
f_avg = np.mean(f_hist)
else:
armijo_fails += 1
# if Wolfe condition is satisfied, perform BFGS update
if wolfe_flag:
y_k = g_new - g_k
s_k = beta * p_k
if options['qn_hist_size'] < np.inf:
# update L-BFGS matrix
rho = 1 / np.dot(s_k, y_k)
qn_init = 1 / (rho * np.dot(y_k, y_k))
qn_hist.append((s_k, y_k, rho))
if len(qn_hist) > options['qn_hist_size']:
qn_hist.pop(0)
else:
# heuristic at first iteration to capture scaling
if iter == 0:
H = np.dot(y_k, s_k) / np.dot(y_k, y_k) * np.identity(n)
# update BFGS matrix
rho = 1. / np.dot(s_k, y_k)
mat = np.identity(n) - rho * np.outer(s_k, y_k)
H = np.matmul(np.matmul(mat, H), mat.transpose()) + rho * np.outer(s_k, s_k)
# update mu
mu_hist = np.append(mu_hist, mu_hat)
if mu_hist.shape[0] > options['mu_hist_size']:
mu_hist = mu_hist[1:]
mu = np.min(mu_hist)
else:
wolfe_fails += 1
# iterate counter
iter += 1
# check if made progress
if f_k < f_avg:
term_count = 0
else:
term_count += 1
# set new gradient at new iterate
# if Armijo condition holds, not split, and grad provided, sets gradient to be g_new
if armijo_flag and not split_flag and callable(grad):
g_k = g_new
# otherwise, evaluates gradient at new point
else:
g_k = grad(x_k)
grad_evals += 1
if callable(eps_g):
eps_gk = eps_g(x_k)
else:
eps_gk = np.copy(eps_g)
# norm_gk = np.linalg.norm(g_k, ord=np.inf)
norm_gk = np.linalg.norm(g_k)
# check if desired tolerance is reached
if options['terminate'] >= 3 and norm_gk <= options['tol']:
flag = 0
break
# check if maximum number of function evaluations is reached
elif func_evals > options['max_feval']:
flag = 2
break
# check if maximum number of gradient evaluations is reached
elif grad_evals > options['max_geval']:
flag = 3
break
# check if function noise level is reached
elif options['terminate'] >= 2 and np.abs(f_k - f_avg) < 2 * eps_fk:
flag = 4
break
# check if gradient noise level is reached
elif (options['terminate'] >= 2 and isinstance(eps_gk, np.ndarray) and eps_gk.ndim > 0 and
eps_gk.shape[0] > 1 and np.all(np.abs(g_k) < eps_gk)):
flag = 5
break
elif (options['terminate'] >= 2 and (not isinstance(eps_gk, np.ndarray) or eps_gk.ndim == 0 or
eps_gk.shape[0] == 0) and norm_gk < eps_gk):
flag = 5
break
# check if no more progress is made
elif options['terminate'] >= 1 and term_count >= options['term_iter']:
flag = 6
break
# check numerics
elif options['terminate'] >= 1 and eps_f == 0 and eps_g == 0 and \
(np.linalg.norm(x_k - x_old, ord=np.inf) < eps_m * np.maximum(1., np.linalg.norm(x_k, ord=np.inf)) or
f_old - f_k < eps_m * np.maximum(1., np.abs(f_k))):
flag = 7
break
# print iteration info
if options['display'] >= 2:
print(' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e '
% (iter, f_k, norm_gk, func_evals, grad_evals, alpha, beta, mu))
# store values
results['f_ks'] = np.append(results['f_ks'], f_k)
results['norm_gks'] = np.append(results['norm_gks'], norm_gk)
results['func_evals'] = np.append(results['func_evals'], func_evals)
results['grad_evals'] = np.append(results['grad_evals'], grad_evals)
results['alphas'] = np.append(results['alphas'], alpha)
results['betas'] = np.append(results['betas'], beta)
results['mus'] = np.append(results['mus'], mu)
results['eps_fs'] = np.append(results['eps_fs'], eps_fk)
results['eps_gs'] = np.append(results['eps_gs'], eps_gk)
results['norm_pks'] = np.append(results['norm_pks'], norm_pk)
# print results
if options['display'] >= 1:
np.set_printoptions(threshold=5)
print('=======================================================================================================================')
print('Summary of Run')
print('=======================================================================================================================')
if flag == 0:
print('Success! Converged to desired gradient tolerance.')
elif flag == 1:
print('Terminated! Reached maximum number of iterations.')
elif flag == 2:
print('Terminated! Reached maximum number of function evaluations.')
elif flag == 3:
print('Terminated! Reached maximum number of gradient evaluations.')
elif flag == 4:
print('Terminated! Reached noise level of the function.')
elif flag == 5:
print('Terminated! Reached noise level of the gradient.')
elif flag == 6:
print('Terminated! No more progress made after term_count iterations.')
elif flag == 7:
print('Terminated! No more progress due to numerical issues.')
print('Total Number of Iterations:', iter)
print('Final Solution:', x_k)
print('Final Objective Value:', f_k)
print('Final Norm of Gradient:', norm_gk)
print('Number of Function Evaluations:', func_evals)
print('Number of Gradient Evaluations:', grad_evals)
print('=======================================================================================================================')
return x_k, f_k, iter, func_evals, grad_evals, flag, results
def _line_search_nt_wolfe(func, grad, x_k, p_k, eps_f=0., eps_g=0., f_k=None, g_k=None, alpha_init=1., beta_init=1.,
mu=None, c1=1e-4, c2=0.9, c3=0.5, split_iter=30, max_ls_iter=20, verbose=False):
"""Noise-Tolerant Armijo-Wolfe Line Search
Function for performing noise-tolerant Armijo-Wolfe line search for noise-tolerant BFGS and L-BFGS methods.
Line search reverts back to bisectioning weak Armijo-Wolfe line search if both eps_f and eps_g = 0.
Parameters
----------
func : callable
The objective function to be minimized.
``func(x, *args) -> float``
where ``x`` is a 1-D array with shape (n,).
grad : callable, optional
Method for computing the gradient vector.
``grad(x, *args) -> array_like, shape (n,)``
where ``x`` is a 1-D array with shape (n,).
x_k : ndarray
Current iterate with shape (n,).
p_k : ndarray
Search direction with shape (n,).
eps_f : {float, callable}, optional
Noise level of function. If callable, should return float. (Default: 0)
eps_g : {float, ndarray, callable}, optional
Noise level of the gradient. If float or callable that returns float, assumes 2-norm bound on the gradient
noise. If ndarray or callable that returns ndarray, eps_g must be have shape (n,) and assumes bounds on the
noise with respect to each component.
f_k : float, optional
(Noisy) objective value `func` at current iterate x_k. If None, will evaluate with `func(x_k)`.
g_k : float, optional
(Noisy) gradient `grad` at current iterate x_k. If None, will evaluate with `grad(x_k)`.
alpha_init : float, optional
Initial steplength. (Default: 1)
beta_init : float, optional
Initial lengthening parameter. (Default: 1)
mu : float, optional
Estimate of strong convexity parameter.
c1 : float, optional
Constant for Armijo condition. (Default: 1e-4)
c2 : float, optional
Constant for Wolfe condition. (Default: 0.9)
c3 : float, optional
Constant for noise control condition. (Default: 0.5)
split_iter : int, optional
Maximum number of line search trials before triggering split phase. (Default: 30)
max_ls_iter : int, optional
Maximum number of line search trials/iterations in split phase. (Default: 20)
verbose : bool, optional
Print line search information. (Default: False)
Returns
-------
alpha : float
Steplength.
beta : float
Lengthening parameter.
mu : float
Estimate of strong convexity parameter.
f_new : float
Function value at new iterate.
g_new : ndarray
Gradient at new iterate.
eps_fp : float
Noise level of function at x_k + alpha * p_k.
eps_gp : float
Noise level of gradient at x_k + beta * p_k.
func_evals : int
Number of function evaluations.
grad_evals : int
Number of gradient evaluations.
armijo_flag : bool
Flag for Armijo condition success.
wolfe_flag : bool
Flag for Wolfe and noise control condition success.
split_flag : bool
Flag for when steplength and lengthening parameter are not equal.
Authors
-------
Hao-Jun Michael Shi ([email protected])
Yuchen Xie ([email protected])
Department of Industrial Engineering and Management Sciences
Northwestern University
"""
# print initial header for line search
if verbose:
print(
'====================================================================================================================================================='
)
# initialize line search
armijo_flag = False
wolfe_flag = False
split_flag = False
ls_iter = 0
func_evals = 0
grad_evals = 0
# define upper and lower brackets
upper_bracket = np.inf
lower_bracket = 0
# compute f_k and g_k if necessary
if f_k is None:
f_k = func(x_k)
func_evals += 1
# compute gradient at x_k, if not available
if g_k is None:
g_k = grad(x_k)
grad_evals += 1
# compute error bounds
if callable(eps_f):
eps_fk = eps_f(x_k)
else:
eps_fk = np.copy(eps_f)
if callable(eps_g):
eps_gk = eps_g(x_k)
else:
eps_gk = np.copy(eps_g)
# compute dot product and norm
gtp = np.dot(g_k, p_k)
norm_pk = np.linalg.norm(p_k)
# initialize quantities
g_new = np.inf
gtp_new = np.inf
# define both steplength and lengthening parameter
alpha = np.copy(alpha_init)
beta = np.copy(beta_init)
# store best steplength, strong convexity parameter
alpha_best = 0.
f_best = np.inf
eps_fbest = np.inf
rhs = None
# check if steplength and lengthening parameter are different
if alpha != beta:
split_flag = True
# evaluate gradient
g_new = grad(x_k + beta * p_k)
grad_evals += 1
gtp_new = np.dot(g_new, p_k)
# compute initial step function value
f_new = func(x_k + alpha * p_k)
func_evals += 1
if callable(eps_f):
eps_fp = eps_f(x_k + alpha * p_k)
else:
eps_fp = np.copy(eps_f)
# set sufficient decrease
if isinstance(eps_gk, np.ndarray) and eps_gk.ndim > 0 and eps_gk.shape[0] > 1:
etp = eps_gk.dot(np.abs(p_k))
else:
etp = eps_gk * norm_pk
# print initial header for line search
if verbose:
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
print('Entering Initial Phase')
# main loop
while ls_iter < split_iter and not split_flag:
# print header
if verbose and ls_iter % 25 == 0:
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
print(
' LS Iter | alpha | F_new | F_old | (g_old)Tp | (g_new)Tp | eps_fk | eps_fp | eps_gk | eps_gp '
)
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
# enforce sufficient decrease if condition satisfied
if gtp < -etp:
suff_dec = c1 * alpha * gtp
# otherwise, enforce simple decrease
else:
suff_dec = 0
# relax Armijo after 1st trial point
if ls_iter > 0:
relax = eps_fk + eps_fp
else:
relax = 0
# check Armijo condition
if f_new > f_k + suff_dec + relax:
# armijo failure
armijo_flag = False
# print result
if verbose:
print(
' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | | % 8.3e | % 8.3e | % 8.3e | '
% (ls_iter, alpha, f_k, f_new, gtp, eps_fk, eps_fp, eps_gk))
# bisect
upper_bracket = alpha
alpha = (lower_bracket + alpha) / 2.0
beta = alpha
# evaluate function
f_new = func(x_k + alpha * p_k)
func_evals += 1
if callable(eps_f):
eps_fp = eps_f(x_k + alpha * p_k)
else:
eps_fp = np.copy(eps_f)
else:
# armijo success
armijo_flag = True
# track best steplength
if f_new < f_best:
alpha_best = alpha
f_best = f_new
eps_fbest = eps_fp
# evaluate gradient
g_new = grad(x_k + beta * p_k)
grad_evals += 1
gtp_new = np.dot(g_new, p_k)
if callable(eps_g):
eps_gp = eps_g(x_k + beta * p_k)
else:
eps_gp = np.copy(eps_g)
if isinstance(eps_gk, np.ndarray) and eps_gk.ndim > 0 and eps_gk.shape[0] > 1:
rhs = (eps_gk + eps_gp).dot(np.abs(p_k))
else:
rhs = (eps_gk + eps_gp) * norm_pk
# check noise control condition
if np.abs(gtp_new - gtp) < (1 + c3) * rhs:
# print result
if verbose:
print(
' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e '
% (ls_iter, alpha, f_k, f_new, gtp, gtp_new, eps_fk, eps_fp, eps_gk, eps_gp))
# split
split_flag = True
beta = 2 * alpha
continue
# check Wolfe condition
if gtp_new < c2 * gtp:
# wolfe failure
wolfe_flag = False
# print result
if verbose:
print(
' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e '
% (ls_iter, alpha, f_k, f_new, gtp, gtp_new, eps_fk, eps_fp, eps_gk, eps_gp))
# bisect
lower_bracket = alpha
if upper_bracket == np.inf:
alpha = 2 * alpha
else:
alpha = (upper_bracket + alpha) / 2
beta = alpha
# evaluate function
f_new = func(x_k + alpha * p_k)
func_evals += 1
if callable(eps_f):
eps_fp = eps_f(x_k + alpha * p_k)
else:
eps_fp = np.copy(eps_f)
else:
# wolfe success
wolfe_flag = True
# iterate
ls_iter += 1
# break if both conditions satisfied
if armijo_flag and wolfe_flag:
# print result
if verbose:
print(
' % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e | % 8.3e '
% (ls_iter, alpha, f_k, f_new, gtp, gtp_new, eps_fk, eps_fp, eps_gk, eps_gp))
break
# change to split mode
if not armijo_flag or not wolfe_flag or split_flag:
split_flag = True
# re-initialize beta if necessary
if rhs:
beta_hist = (1 + c3) * rhs / (mu * norm_pk ** 2)
else:
if isinstance(eps_gk, np.ndarray) and eps_gk.ndim > 0 and eps_gk.shape[0] > 1:
beta_hist = 2 * (1 + c3) * eps_gk.dot(np.abs(p_k)) / (mu * norm_pk ** 2)
else:
beta_hist = 2 * (1 + c3) * eps_gk / (mu * norm_pk)
beta = np.maximum(beta, beta_hist)
# evaluate gradient
g_new = grad(x_k + beta * p_k)
grad_evals += 1
gtp_new = np.dot(g_new, p_k)
# perform backtracking and lengthening
# use best alpha if available
if f_best < np.inf:
alpha = alpha_best
f_new = f_best
eps_fp = eps_fbest
armijo_flag = True
else:
alpha, f_new, eps_fp, fevals_back, armijo_flag = \
_backtracking(func, x_k, p_k, g_k, alpha=alpha, eps_f=eps_f, eps_g=eps_g, f_k=f_k, eps_fk=eps_fk,
eps_fp=eps_fp, eps_gk=eps_gk, gtp=gtp, f_new=f_new, etp=etp, norm_pk=norm_pk, c1=c1,
max_ls_iter=max_ls_iter, verbose=verbose)
func_evals += fevals_back
if not wolfe_flag:
beta, g_new, gtp_new, eps_gp, fevals_length, gevals_length, wolfe_flag = \
_lengthening(grad, x_k, p_k, beta=beta, eps_g=eps_g, g_k=g_k, eps_gk=eps_gk, eps_gp=eps_gp, gtp=gtp,
g_new=g_new, gtp_new=gtp_new, norm_pk=norm_pk, c3=c3, max_ls_iter=max_ls_iter,
verbose=verbose)
func_evals += fevals_length
grad_evals += gevals_length
# if Armijo fails, then set to initial point
if not armijo_flag:
alpha = 0.0
f_new = f_k
eps_fp = eps_fk
# if Wolfe fails, set gradient to initial point
if not wolfe_flag:
mu = np.inf
beta = 0.0
g_new = g_k
eps_gp = eps_gk
# compute mu if beta satisfies conditions
else:
mu = (gtp_new - gtp) / (beta * norm_pk ** 2)
# print inner iterations
if verbose and armijo_flag is True and wolfe_flag is True:
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
print('Success! Steplength:', alpha, 'Lengthening:', beta)
print(
'====================================================================================================================================================='
)
elif verbose:
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
print('Line search failed! Steplength:', alpha, 'Lengthening:', beta)
print(
'====================================================================================================================================================='
)
return alpha, beta, mu, f_new, g_new, eps_fp, eps_gp, func_evals, grad_evals, armijo_flag, wolfe_flag, split_flag
def _backtracking(func, x_k, p_k, g_k, alpha=1., eps_f=0., eps_g=0., f_k=None, eps_fk=None, eps_fp=None,
eps_gk=None, gtp=None, f_new=None, etp=None, norm_pk=None, c1=1e-4, max_ls_iter=20, verbose=False):
"""Backtracking Line Search
Function for performing backtracking Armijo line search with relaxation. Designed for split phase of noise-tolerant
two-phase Armijo-Wolfe line search. Reverts back to Armijo backtracking line search if both eps_f and eps_g = 0.
Parameters
----------
func : callable
The objective function to be minimized.
``func(x, *args) -> float``
where ``x`` is a 1-D array with shape (n,).
x_k : ndarray
Current iterate with shape (n,).
p_k : ndarray
Search direction with shape (n,).
g_k : ndarray
(Noisy) gradient `grad` at current iterate x_k with shape (n,).
alpha : float
Initial steplength. (Default: 1)
eps_f : {float, callable}, optional
Noise level of function. If callable, should return float. (Default: 0)
eps_g : {float, ndarray, callable}, optional
Noise level of the gradient. If float or callable that returns float, assumes 2-norm bound on the gradient
noise. If ndarray or callable that returns ndarray, eps_g must be have shape (n,) and assumes bounds on the
noise with respect to each component.
f_k : float, optional
(Noisy) objective value `func` at current iterate x_k. If None, will evaluate with `func(x_k)`.
eps_fk : float, optional
Noise level of function at x_k. If None, will evaluate with `eps_f(x_k)`. (Default: None)
eps_fp : float, optional
Noise level of function at x_k + alpha * p_k. If None, will evaluate with `eps_f(x_k + alpha * p_k)`.
(Default: None)
eps_gk : {float, ndarray}, optional
Noise level of gradient at x_k. If None, will evaluate with `eps_g(x_k)`. (Default: None)
gtp : float, optional
Directional derivative at x_k along p_k. If None, will evaluate with `g_k.dot(p_k)`. (Default: None)
f_new : float, optional
(Noisy) objective value `func` at iterate x_k + alpha * p_k. If None, will evaluate with
`func(x_k + alpha * p_k)`.
etp : float, optional
Noise level of directional derivative along p_k. If None, will evaluate with `eps_gk * np.linalg.norm(p_k)` if
eps_gk is a float; otherwise, `eps_gk.dot(np.abs(p_k))`. (Default: None)
norm_pk : float, optional
Norm of p_k. If None, will evaluate with `np.linalg.norm(p_k)`. (Default: None)
c1 : float, optional
Constant for Armijo condition. (Default: 1e-4)
max_ls_iter : int, optional
Maximum number of line search trials/iterations. (Default: 20)
verbose : bool, optional
Print line search information. (Default: False)
Returns
-------
alpha : float
Steplength.
f_new : float
Function value at new iterate x_k + alpha * p_k.
eps_fp : float
Noise level of function at x_k + alpha * p_k.
func_evals : int
Number of function evaluations.
armijo_flag : bool
Flag for Armijo condition success.
Authors
-------
Hao-Jun Michael Shi ([email protected])
Yuchen Xie ([email protected])
Department of Industrial Engineering and Management Sciences
Northwestern University
"""
# print initial header for lengthening
if verbose:
print(
'-----------------------------------------------------------------------------------------------------------------------------------------------------'
)
print('Entering Split Phase: Backtracking')
# initialize counter and flags
func_evals = 0
ls_iter = 0
armijo_flag = False
# initialize directional derivatives and function value (if necessary)
if gtp is None:
gtp = np.dot(g_k, p_k)
if f_k is None:
f_k = func(x_k)