@@ -240,11 +240,11 @@ \section{Monads}
240240Let's construct a monad in $ \cat {Span}$ . We pick a $ 0 $ -cell, which is a
241241set that, for reasons that will become clear soon, I will call
242242$ \mathit {Ob}$ . Next, we pick an endo-$ 1 $ -cell: a span from $ \mathit {Ob}$ back
243- to $ \mathit {Ob}$ . It has a set at the apex, which I will call $ \mathit {Ar }$ ,
243+ to $ \mathit {Ob}$ . It has a set at the apex, which I will call $ \mathit {Arr }$ ,
244244equipped with two functions:
245245\begin {align* }
246- \mathit {dom} & \Colon \mathit {Ar } \to \mathit {Ob} \\
247- \mathit {cod} & \Colon \mathit {Ar } \to \mathit {Ob}
246+ \mathit {dom} & \Colon \mathit {Arr } \to \mathit {Ob} \\
247+ \mathit {cod} & \Colon \mathit {Arr } \to \mathit {Ob}
248248\end {align* }
249249
250250\begin {figure }[H]
@@ -253,7 +253,7 @@ \section{Monads}
253253\end {figure }
254254
255255\noindent
256- Let's call the elements of the set $ \mathit {Ar }$ `` arrows.'' If I also
256+ Let's call the elements of the set $ \mathit {Arr }$ `` arrows.'' If I also
257257tell you to call the elements of $ \mathit {Ob}$ `` objects,'' you might get
258258a hint where this is leading to. The two functions $ \mathit {dom}$ and
259259$ \mathit {cod}$ assign the domain and the codomain to an `` arrow.''
@@ -262,7 +262,7 @@ \section{Monads}
262262$ \mu $ . The monoidal unit, in this case, is the trivial span from
263263$ \mathit {Ob}$ to $ \mathit {Ob}$ with the apex at $ \mathit {Ob}$ and two identity
264264functions. The $ 2 $ -cell $ \eta $ is a function between the apices
265- $ \mathit {Ob}$ and $ \mathit {Ar }$ . In other words, $ \eta $ assigns an
265+ $ \mathit {Ob}$ and $ \mathit {Arr }$ . In other words, $ \eta $ assigns an
266266`` arrow'' to every `` object.'' A $ 2 $ -cell in $ \cat {Span}$ must satisfy
267267commutation conditions --- in this case:
268268\begin {align* }
@@ -284,8 +284,8 @@ \section{Monads}
284284`` identity arrow.''
285285
286286The second $ 2 $ -cell $ \mu $ acts on the composition of the span
287- $ \mathit {Ar }$ with itself. The composition is defined as a pullback, so
288- its elements are pairs of elements from $ \mathit {Ar }$ --- pairs of
287+ $ \mathit {Arr }$ with itself. The composition is defined as a pullback, so
288+ its elements are pairs of elements from $ \mathit {Arr }$ --- pairs of
289289`` arrows'' $ (a_1 , a_2 )$ . The pullback condition is:
290290\[ \mathit {cod}\ a_1 = \mathit {dom}\ a_2\]
291291We say that $ a_1 $ and $ a_2 $ are `` composable,'' because the
@@ -299,7 +299,7 @@ \section{Monads}
299299\noindent
300300The $ 2 $ -cell $ \mu $ is a function that maps a pair of composable
301301`` arrows'' $ (a_1 , a_2 )$ to a single `` arrow'' $ a_3 $ from
302- $ \mathit {Ar }$ . In other words $ \mu $ defines composition of `` arrows'' .
302+ $ \mathit {Arr }$ . In other words $ \mu $ defines composition of `` arrows'' .
303303
304304It's easy to check that monad laws correspond to identity and
305305associativity laws for arrows. We have just defined a category (a small
0 commit comments