-
Notifications
You must be signed in to change notification settings - Fork 4.5k
/
Copy pathlora_finetune.py
455 lines (399 loc) · 17.7 KB
/
lora_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Supervised fine-tuning of MoE models like Deepseek V3/R1 on a downstream task.
"""
import argparse
import json
import os
import resource
from contextlib import nullcontext
from types import MethodType
import torch
import torch.distributed as dist
from coati.dataset.loader import RawConversationDataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import (
GeminiPlugin,
HybridParallelPlugin,
LowLevelZeroPlugin,
MoeHybridParallelPlugin,
Plugin,
TorchDDPPlugin,
)
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.utils import get_current_device
def all_reduce_mean(loss: torch.Tensor, plugin: Plugin) -> torch.Tensor:
loss = loss.data
group = getattr(plugin, "dp_group", None)
dist.all_reduce(loss, group=group)
return loss / dist.get_world_size(group)
def train(args) -> None:
# ==============================
# Initialize Distributed Training
# ==============================
colossalai.launch_from_torch()
accelerator = get_accelerator()
coordinator = DistCoordinator()
# ==============================
# Initialize Booster
# ==============================
if args.plugin == "ddp":
plugin = TorchDDPPlugin(find_unused_parameters=True if args.use_grad_checkpoint is False else False)
elif args.plugin == "gemini":
plugin = GeminiPlugin(
precision=args.mixed_precision,
initial_scale=2**16,
max_norm=args.grad_clip,
enable_gradient_accumulation=(args.accumulation_steps > 1),
enable_fused_normalization=get_accelerator().is_available(),
enable_flash_attention=args.use_flash_attn,
)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
precision=args.mixed_precision,
placement_policy="auto",
initial_scale=2**16,
max_norm=args.grad_clip,
enable_gradient_accumulation=(args.accumulation_steps > 1),
enable_fused_normalization=get_accelerator().is_available(),
enable_flash_attention=args.use_flash_attn,
)
elif args.plugin == "zero2":
plugin = LowLevelZeroPlugin(
stage=2,
precision=args.mixed_precision,
initial_scale=2**16,
max_norm=args.grad_clip,
)
elif args.plugin == "zero2_cpu":
plugin = LowLevelZeroPlugin(
stage=2,
precision=args.mixed_precision,
initial_scale=2**16,
cpu_offload=True,
max_norm=args.grad_clip,
)
elif args.plugin == "3d":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
sp_size=args.sp,
sequence_parallelism_mode=args.sp_mode,
zero_stage=args.zero_stage,
enable_flash_attention=args.use_flash_attn,
enable_fused_normalization=get_accelerator().is_available(),
enable_sequence_parallelism=args.enable_sequence_parallelism,
cpu_offload=True if args.zero_stage >= 1 and args.zero_cpu_offload else False,
max_norm=args.grad_clip,
precision=args.mixed_precision,
microbatch_size=args.microbatch_size,
)
elif args.plugin == "moe":
plugin = MoeHybridParallelPlugin(
ep_size=args.ep,
tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero_stage,
sp_size=args.sp,
sequence_parallelism_mode=args.sp_mode,
enable_sequence_parallelism=args.sp > 1,
enable_fused_normalization=get_accelerator().is_available(),
enable_flash_attention=args.use_flash_attn,
max_norm=args.grad_clip,
precision=args.mixed_precision,
microbatch_size=args.microbatch_size,
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
def is_master():
if isinstance(plugin, HybridParallelPlugin) and plugin.pp_size > 1:
return coordinator.rank == coordinator.world_size - 1
return coordinator.is_master()
# ==============================
# Initialize Tensorboard and Save Config
# ==============================
if is_master():
if args.tensorboard_dir is not None:
from torch.utils.tensorboard import SummaryWriter
os.makedirs(args.tensorboard_dir, exist_ok=True)
writer = SummaryWriter(args.tensorboard_dir)
with open(args.config_file, "w") as f:
json.dump(args.__dict__, f, indent=4)
# ======================================================
# Initialize Tokenizer, Dataset, Collator and Dataloader
# ======================================================
tokenizer = AutoTokenizer.from_pretrained(args.pretrained, trust_remote_code=True)
coordinator.print_on_master(
f"Training Info:\nConfig file: {args.config_file} \nTensorboard logs: {args.tensorboard_dir} \nModel checkpoint: {args.save_dir}"
)
coordinator.print_on_master(f"Load dataset: {args.dataset}")
dataset = RawConversationDataset(
tokenizer,
args.dataset,
args.max_length,
)
dataloader = plugin.prepare_dataloader(
dataset=dataset,
batch_size=args.batch_size,
shuffle=True,
drop_last=True,
)
coordinator.print_on_master(
f"Max device memory after data loader: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
)
# ======================================================
# Initialize Model, Objective, Optimizer and LR Scheduler
# ======================================================
# When training the ChatGLM model, LoRA and gradient checkpointing are incompatible.
init_ctx = (
LazyInitContext(default_device=get_current_device())
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
else nullcontext()
)
attn_impl = "eager" if get_accelerator().name == "npu" else "flash_attention_2"
config = AutoConfig.from_pretrained(args.pretrained, trust_remote_code=True)
with init_ctx:
# from_pretrained is not compatible with LoRA, we load pretrained weights later.
# model = AutoModelForCausalLM.from_pretrained(
# args.pretrained,
# torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
# trust_remote_code=True,
# attn_implementation=attn_impl,
# )
model = AutoModelForCausalLM.from_config(
config,
trust_remote_code=True,
attn_implementation=attn_impl,
torch_dtype=torch.bfloat16 if args.mixed_precision == "bf16" else torch.float16,
)
if args.lora_rank > 0:
if model.__class__.__name__.startswith("DeepseekV3"):
lora_config = LoraConfig(
task_type="CAUSAL_LM",
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=["gate_proj", "up_proj", "down_proj"],
)
else:
lora_config = LoraConfig(task_type="CAUSAL_LM", r=args.lora_rank, lora_alpha=args.lora_alpha)
model = booster.enable_lora(model, lora_config=lora_config)
# this is essential, otherwise the grad checkpoint will not work.
model.train()
if args.use_grad_checkpoint:
model.gradient_checkpointing_enable()
coordinator.print_on_master(msg="Gradient checkpointing enabled successfully")
if model.config.__class__.__name__.startswith("DeepseekV3"):
model.config.use_cache = False
model.eval()
# enable grad for moe layers
for m in model.modules():
if m.__class__.__name__ == "DeepseekV3MoE":
m.moe_infer = MethodType(m.moe_infer.__wrapped__, m)
model_numel = sum(p.numel() for p in model.parameters())
coordinator.print_on_master(f"Model params: {model_numel / 1e9:.2f} B")
optimizer = HybridAdam(
model_params=model.parameters(),
lr=args.lr,
betas=(0.9, 0.95),
weight_decay=args.weight_decay,
adamw_mode=True,
)
if args.warmup_steps is None:
args.warmup_steps = int(args.num_epochs * 0.025 * (len(dataloader) // args.accumulation_steps))
coordinator.print_on_master(f"Warmup steps is set to {args.warmup_steps}")
lr_scheduler = CosineAnnealingWarmupLR(
optimizer=optimizer,
total_steps=args.num_epochs * (len(dataloader) // args.accumulation_steps),
warmup_steps=args.warmup_steps,
eta_min=0.1 * args.lr,
)
# Flash attention will be disabled because it does NOT support fp32.
default_dtype = torch.float16 if args.mixed_precision == "fp16" else torch.bfloat16
torch.set_default_dtype(default_dtype)
model, optimizer, _, dataloader, lr_scheduler = booster.boost(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
dataloader=dataloader,
)
torch.set_default_dtype(torch.float)
booster.load_model(model, args.pretrained, low_cpu_mem_mode=False, num_threads=8)
coordinator.print_on_master(
f"Booster init max device memory: {accelerator.max_memory_allocated() / 1024 ** 2:.2f} MB"
)
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss / 1024:.2f} MB"
)
start_epoch = 0
start_step = 0
num_steps_per_epoch = len(dataloader) // args.accumulation_steps
for epoch in range(start_epoch, args.num_epochs):
dataloader.sampler.set_epoch(epoch=epoch)
if isinstance(plugin, HybridParallelPlugin) and plugin.pp_size > 1:
data_iter = iter(dataloader)
step_bar = tqdm(
range(len(dataloader)),
desc="Step",
disable=not is_master(),
)
for step in step_bar:
outputs = booster.execute_pipeline(
data_iter,
model,
criterion=lambda outputs, inputs: outputs[0],
optimizer=optimizer,
return_loss=True,
)
loss = outputs["loss"]
if booster.plugin.stage_manager.is_last_stage():
global_loss = all_reduce_mean(loss, plugin)
optimizer.step()
if booster.plugin.stage_manager.is_last_stage():
grad_norm = optimizer.get_grad_norm()
step_bar.set_postfix({"loss": global_loss.item(), "grad_norm": grad_norm})
if args.tensorboard_dir is not None and is_master():
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
writer.add_scalar(tag="Loss", scalar_value=global_loss.item(), global_step=global_step)
writer.add_scalar(
tag="Learning Rate",
scalar_value=lr_scheduler.get_last_lr()[0],
global_step=global_step,
)
writer.add_scalar(tag="Grad Norm", scalar_value=grad_norm, global_step=global_step)
lr_scheduler.step()
optimizer.zero_grad()
else:
pbar = tqdm(
dataloader,
desc=f"Epoch {epoch}",
disable=not is_master(),
initial=start_step // args.accumulation_steps,
)
total_loss = torch.tensor(0.0, device=get_current_device())
for step, batch in enumerate(pbar, start=start_step // args.accumulation_steps):
batch = {k: v.to(get_current_device()) for k, v in batch.items() if isinstance(v, torch.Tensor)}
batch_output = model(**batch)
loss = batch_output.loss / args.accumulation_steps
total_loss.add_(loss.data)
booster.backward(loss=loss, optimizer=optimizer)
if (step + 1) % args.accumulation_steps == 0:
all_reduce_mean(total_loss, plugin)
optimizer.step()
grad_norm = optimizer.get_grad_norm()
pbar.set_postfix({"loss": total_loss.item(), "grad_norm": grad_norm})
if args.tensorboard_dir is not None and is_master():
global_step = (epoch * num_steps_per_epoch) + (step + 1) // args.accumulation_steps
writer.add_scalar(tag="Loss", scalar_value=total_loss.item(), global_step=global_step)
writer.add_scalar(
tag="Learning Rate",
scalar_value=lr_scheduler.get_last_lr()[0],
global_step=global_step,
)
writer.add_scalar(tag="Grad Norm", scalar_value=grad_norm, global_step=global_step)
lr_scheduler.step()
optimizer.zero_grad()
total_loss.fill_(0.0)
# Delete cache.
# del batch, batch_labels, batch_output, loss
accelerator.empty_cache()
# Final save.
coordinator.print_on_master("Start saving final model checkpoint")
if args.lora_rank > 0:
booster.save_lora_as_pretrained(model, os.path.join(args.save_dir, "lora"))
else:
booster.save_model(model, os.path.join(args.save_dir, "modeling"), shard=True)
coordinator.print_on_master(f"Saved final model checkpoint at epoch {epoch} at folder {args.save_dir}")
coordinator.print_on_master(f"Max device memory usage: {accelerator.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Basic training information.
parser.add_argument(
"-m",
"--pretrained",
type=str,
required=True,
help="Address of the pre-trained model",
)
parser.add_argument("-d", "--dataset", type=str, required=True, help="Raw Jonl dataset for training.")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="zero2",
choices=["gemini", "gemini_auto", "zero2", "zero2_cpu", "3d", "ddp", "moe"],
help="Choose which plugin to use",
)
parser.add_argument("--save_dir", type=str, default="checkpoint_dir", help="Checkpoint directory")
parser.add_argument("--tensorboard_dir", type=str, default=None, help="Tensorboard directory")
parser.add_argument("--config_file", type=str, default="training_config.json", help="Config file")
# Training parameters
parser.add_argument("-n", "--num_epochs", type=int, default=1, help="Number of training epochs")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Number of accumulation steps")
parser.add_argument("--batch_size", type=int, default=2, help="Global Batch size of each process")
parser.add_argument("--lr", type=float, default=3e-4, help="Learning rate")
parser.add_argument("--max_length", type=int, default=8192, help="Model max length")
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["fp16", "bf16"],
help="Mixed precision",
)
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping value")
parser.add_argument("--weight_decay", type=float, default=0.1, help="Weight decay")
parser.add_argument("--warmup_steps", type=int, default=None, help="Warmup steps")
parser.add_argument(
"-g",
"--use_grad_checkpoint",
action="store_true",
default=False,
help="Use gradient checkpointing",
)
parser.add_argument(
"-f",
"--use_flash_attn",
action="store_true",
default=False,
help="Use flash-attention",
)
# Additional arguments for 3d plugin.
parser.add_argument("--tp", type=int, default=1, help="TP size, used for 3d plugin.")
parser.add_argument("--pp", type=int, default=1, help="PP size, used for 3d plugin.")
parser.add_argument("--sp", type=int, default=1, help="SP size, used for 3d plugin.")
parser.add_argument("--ep", type=int, default=1, help="EP size, used for moe plugin.")
parser.add_argument("--zero_stage", type=int, default=1, help="Zero stage, used for 3d plugin.", choices=[0, 1, 2])
parser.add_argument(
"--sp_mode",
type=str,
default="split_gather",
choices=["split_gather", "ring", "all_to_all"],
help="SP mode, used for 3d plugin.",
)
parser.add_argument(
"--enable_sequence_parallelism",
default=False,
action="store_true",
help="Whether to enable SP, used for 3d plugin.",
)
parser.add_argument(
"--zero_cpu_offload", default=False, action="store_true", help="Whether to use offloading, used for 3d plugin."
)
parser.add_argument(
"--microbatch_size", type=int, default=1, help="Batch size for each process in PP, used for 3d plugin."
)
parser.add_argument("--lora_rank", type=int, default=0, help="lora rank when using lora to train.")
parser.add_argument("--lora_alpha", type=int, default=8, help="lora alpha when using lora to train.")
args = parser.parse_args()
if args.plugin in ["3d", "moe"] and args.pp > 1 and args.accumulation_steps > 1:
raise ValueError("Accumulation steps should be 1 when using PP. Please adjust batch size directly.")
train(args)