@@ -639,22 +639,6 @@ def _train(self, train_data, params, verbose):
639
639
print ("\t Elapsed time {:.1f}s" .format (finish_time - start_time ))
640
640
return covs , None
641
641
642
- def timeit (self , train_data , params ):
643
- start_time = time .time ()
644
- train_data = np .array (train_data ) # expects 3D data
645
- ltgl = LatentTimeGraphLasso (alpha = params ['alpha' ],
646
- tau = params ['tau' ],
647
- beta = params ['beta' ],
648
- psi = params ['psi' ],
649
- eta = params ['eta' ],
650
- phi = params ['phi' ],
651
- rho = params ['rho' ],
652
- max_iter = params ['max_iter' ],
653
- verbose = params ['verbose' ])
654
- ltgl .fit (train_data )
655
- finish_time = time .time ()
656
- return finish_time - start_time
657
-
658
642
659
643
class LVGLASSO (Baseline ):
660
644
def __init__ (self , ** kwargs ):
@@ -680,15 +664,3 @@ def _train(self, train_data, params, verbose):
680
664
if verbose :
681
665
print ("\t Elapsed time {:.1f}s" .format (finish_time - start_time ))
682
666
return covs , None
683
-
684
- def timeit (self , train_data , params ):
685
- start_time = time .time ()
686
- for X in train_data :
687
- lvglasso = LatentGraphLasso (alpha = params ['alpha' ],
688
- tau = params ['tau' ],
689
- rho = params ['rho' ],
690
- max_iter = params ['max_iter' ],
691
- verbose = params ['verbose' ])
692
- lvglasso .fit (X )
693
- finish_time = time .time ()
694
- return finish_time - start_time
0 commit comments