@@ -69,11 +69,11 @@ def testExampleUsage(self):
69
69
# Give the predictor partial information, and make predictions
70
70
# about the future.
71
71
pred .reset ()
72
- A = pred .infer ( 0 , sequence [0 ] )
72
+ A = pred .infer ( sequence [0 ] )
73
73
assert ( numpy .argmax ( A [1 ] ) == labels [1 ] )
74
74
assert ( numpy .argmax ( A [2 ] ) == labels [2 ] )
75
75
76
- B = pred .infer ( 1 , sequence [1 ] )
76
+ B = pred .infer ( sequence [1 ] )
77
77
assert ( numpy .argmax ( B [1 ] ) == labels [2 ] )
78
78
assert ( numpy .argmax ( B [2 ] ) == labels [3 ] )
79
79
@@ -121,7 +121,7 @@ def testSingleValue0Steps(self):
121
121
for recordNum in range (10 ):
122
122
pred .learn (recordNum , inp , 2 )
123
123
124
- retval = pred .infer ( 10 , inp )
124
+ retval = pred .infer ( inp )
125
125
self .assertGreater (retval [0 ][2 ], 0.9 )
126
126
127
127
@@ -131,15 +131,18 @@ def testComputeInferOrLearnOnly(self):
131
131
inp .randomize ( .3 )
132
132
133
133
# learn only
134
- c .infer (recordNum = 0 , pattern = inp ) # Don't crash with not enough training data.
134
+ with self .assertRaises (RuntimeError ):
135
+ c .infer (pattern = inp ) # crash with not enough training data.
135
136
c .learn (recordNum = 0 , pattern = inp , classification = 4 )
136
- c .infer (recordNum = 1 , pattern = inp ) # Don't crash with not enough training data.
137
+ with self .assertRaises (RuntimeError ):
138
+ c .infer (pattern = inp ) # crash with not enough training data.
137
139
c .learn (recordNum = 2 , pattern = inp , classification = 4 )
138
140
c .learn (recordNum = 3 , pattern = inp , classification = 4 )
141
+ c .infer (pattern = inp ) # Don't crash with not enough training data.
139
142
140
143
# infer only
141
- retval1 = c .infer (recordNum = 5 , pattern = inp )
142
- retval2 = c .infer (recordNum = 6 , pattern = inp )
144
+ retval1 = c .infer (pattern = inp )
145
+ retval2 = c .infer (pattern = inp )
143
146
self .assertSequenceEqual (list (retval1 [1 ]), list (retval2 [1 ]))
144
147
145
148
@@ -164,7 +167,7 @@ def testComputeComplex(self):
164
167
classification = 4 ,)
165
168
166
169
inp .sparse = [1 , 5 , 9 ]
167
- result = c .infer (recordNum = 4 , pattern = inp )
170
+ result = c .infer (pattern = inp )
168
171
169
172
self .assertSetEqual (set (result .keys ()), set ([1 ]))
170
173
self .assertEqual (len (result [1 ]), 6 )
@@ -206,7 +209,7 @@ def testMultistepSingleValue(self):
206
209
for recordNum in range (10 ):
207
210
classifier .learn (recordNum , inp , 0 )
208
211
209
- retval = classifier .infer (10 , inp )
212
+ retval = classifier .infer (inp )
210
213
211
214
# Should have a probability of 100% for that bucket.
212
215
self .assertEqual (retval [1 ], [1. ])
@@ -221,7 +224,7 @@ def testMultistepSimple(self):
221
224
inp .sparse = [i % 10 ]
222
225
classifier .learn (recordNum = i , pattern = inp , classification = (i % 10 ))
223
226
224
- retval = classifier .infer (99 , inp )
227
+ retval = classifier .infer (inp )
225
228
226
229
self .assertGreater (retval [1 ][0 ], 0.99 )
227
230
for i in range (1 , 10 ):
@@ -267,15 +270,15 @@ def testMissingRecords(self):
267
270
# At this point, we should have learned [1,3,5] => bucket 1
268
271
# [2,4,6] => bucket 2
269
272
inp .sparse = [1 , 3 , 5 ]
270
- result = c .infer (recordNum = recordNum , pattern = inp )
273
+ result = c .infer (pattern = inp )
271
274
c .learn (recordNum = recordNum , pattern = inp , classification = 2 )
272
275
recordNum += 1
273
276
self .assertLess (result [1 ][0 ], 0.1 )
274
277
self .assertGreater (result [1 ][1 ], 0.9 )
275
278
self .assertLess (result [1 ][2 ], 0.1 )
276
279
277
280
inp .sparse = [2 , 4 , 6 ]
278
- result = c .infer (recordNum = recordNum , pattern = inp )
281
+ result = c .infer (pattern = inp )
279
282
c .learn (recordNum = recordNum , pattern = inp , classification = 1 )
280
283
recordNum += 1
281
284
self .assertLess (result [1 ][0 ], 0.1 )
@@ -289,7 +292,7 @@ def testMissingRecords(self):
289
292
# the previous learn associates with bucket 0
290
293
recordNum += 1
291
294
inp .sparse = [1 , 3 , 5 ]
292
- result = c .infer (recordNum = recordNum , pattern = inp )
295
+ result = c .infer (pattern = inp )
293
296
c .learn (recordNum = recordNum , pattern = inp , classification = 0 )
294
297
recordNum += 1
295
298
self .assertLess (result [1 ][0 ], 0.1 )
@@ -300,7 +303,7 @@ def testMissingRecords(self):
300
303
# the previous learn associates with bucket 0
301
304
recordNum += 1
302
305
inp .sparse = [2 , 4 , 6 ]
303
- result = c .infer (recordNum = recordNum , pattern = inp )
306
+ result = c .infer (pattern = inp )
304
307
c .learn (recordNum = recordNum , pattern = inp , classification = 0 )
305
308
recordNum += 1
306
309
self .assertLess (result [1 ][0 ], 0.1 )
@@ -311,7 +314,7 @@ def testMissingRecords(self):
311
314
# the previous learn associates with bucket 0
312
315
recordNum += 1
313
316
inp .sparse = [1 , 3 , 5 ]
314
- result = c .infer (recordNum = recordNum , pattern = inp )
317
+ result = c .infer (pattern = inp )
315
318
c .learn (recordNum = recordNum , pattern = inp , classification = 0 )
316
319
recordNum += 1
317
320
self .assertLess (result [1 ][0 ], 0.1 )
@@ -548,8 +551,8 @@ def testMultiStepPredictions(self):
548
551
c .learn (recordNum , pattern = SDR2 , classification = 1 )
549
552
recordNum += 1
550
553
551
- result1 = c .infer (recordNum , SDR1 )
552
- result2 = c .infer (recordNum , SDR2 )
554
+ result1 = c .infer (SDR1 )
555
+ result2 = c .infer (SDR2 )
553
556
554
557
self .assertAlmostEqual (result1 [0 ][0 ], 1.0 , places = 1 )
555
558
self .assertAlmostEqual (result1 [0 ][1 ], 0.0 , places = 1 )
0 commit comments