|
| 1 | +<!--Copyright 2025 The HuggingFace Team. All rights reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with |
| 4 | +the License. You may obtain a copy of the License at |
| 5 | +
|
| 6 | +http://www.apache.org/licenses/LICENSE-2.0 |
| 7 | +
|
| 8 | +Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on |
| 9 | +an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the |
| 10 | +specific language governing permissions and limitations under the License. |
| 11 | +
|
| 12 | +⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be |
| 13 | +rendered properly in your Markdown viewer. |
| 14 | +
|
| 15 | +--> |
| 16 | + |
| 17 | +# Csm |
| 18 | + |
| 19 | +## Overview |
| 20 | + |
| 21 | +The Conversational Speech Model (CSM) is the first open-source contextual text-to-speech model [released by Sesame](https://www.sesame.com/research/crossing_the_uncanny_valley_of_voice). It is designed to generate natural-sounding speech with or without conversational context. This context typically consists of multi-turn dialogue between speakers, represented as sequences of text and corresponding spoken audio. |
| 22 | + |
| 23 | +**Model Architecture:** |
| 24 | +CSM is composed of two LLaMA-style auto-regressive transformer decoders: a backbone decoder that predicts the first codebook token and a depth decoder that generates the remaining tokens. It uses the pretrained codec model [Mimi](./mimi.md), introduced by Kyutai, to encode speech into discrete codebook tokens and decode them back into audio. |
| 25 | + |
| 26 | +The original csm-1b checkpoint is available under the [Sesame](https://huggingface.co/sesame/csm-1b) organization on Hugging Face. |
| 27 | + |
| 28 | +<div class="flex justify-center"> |
| 29 | + <img src="https://huggingface.co/datasets/eustlb/documentation-images/resolve/main/csm_architecture.png"/> |
| 30 | +</div> |
| 31 | + |
| 32 | +## Usage Tips |
| 33 | + |
| 34 | +### Without Conversational Context |
| 35 | + |
| 36 | +CSM can be used to simply generate speech from a text prompt: |
| 37 | + |
| 38 | +```python |
| 39 | +import torch |
| 40 | +from transformers import CsmForConditionalGeneration, AutoProcessor |
| 41 | + |
| 42 | +model_id = "eustlb/csm-1b" |
| 43 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 44 | + |
| 45 | +# load the model and the processor |
| 46 | +processor = AutoProcessor.from_pretrained(model_id) |
| 47 | +model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device) |
| 48 | + |
| 49 | +# prepare the inputs |
| 50 | +text = "[0]The past is just a story we tell ourselves." # `[0]` for speaker id 0 |
| 51 | +inputs = processor(text, add_special_tokens=True).to(device) |
| 52 | + |
| 53 | +# another equivalent way to prepare the inputs |
| 54 | +conversation = [ |
| 55 | + {"role": "0", "content": [{"type": "text", "text": "The past is just a story we tell ourselves."}]}, |
| 56 | +] |
| 57 | +inputs = processor.apply_chat_template( |
| 58 | + conversation, |
| 59 | + tokenize=True, |
| 60 | + return_dict=True, |
| 61 | +).to(device) |
| 62 | + |
| 63 | +# infer the model |
| 64 | +audio = model.generate(**inputs, output_audio=True) |
| 65 | +processor.save_audio(audio, "example_without_context.wav") |
| 66 | +``` |
| 67 | + |
| 68 | +### With Conversational Context |
| 69 | + |
| 70 | +CSM can be used to generate speech given a conversation, allowing consistency in the voices and content-aware generation: |
| 71 | + |
| 72 | +```python |
| 73 | +import torch |
| 74 | +from transformers import CsmForConditionalGeneration, AutoProcessor |
| 75 | +from datasets import load_dataset, Audio |
| 76 | + |
| 77 | +model_id = "eustlb/csm-1b" |
| 78 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 79 | + |
| 80 | +# load the model and the processor |
| 81 | +processor = AutoProcessor.from_pretrained(model_id) |
| 82 | +model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device) |
| 83 | + |
| 84 | +# prepare the inputs |
| 85 | +ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train") |
| 86 | +# ensure the audio is 24kHz |
| 87 | +ds = ds.cast_column("audio", Audio(sampling_rate=24000)) |
| 88 | +conversation = [] |
| 89 | + |
| 90 | +# 1. context |
| 91 | +for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]): |
| 92 | + conversation.append( |
| 93 | + { |
| 94 | + "role": f"{speaker_id}", |
| 95 | + "content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}], |
| 96 | + } |
| 97 | + ) |
| 98 | + |
| 99 | +# 2. text prompt |
| 100 | +conversation.append({"role": f"{ds[4]['speaker_id']}", "content": [{"type": "text", "text": ds[4]["text"]}]}) |
| 101 | + |
| 102 | +inputs = processor.apply_chat_template( |
| 103 | + conversation, |
| 104 | + tokenize=True, |
| 105 | + return_dict=True, |
| 106 | +).to(device) |
| 107 | + |
| 108 | +# infer the model |
| 109 | +audio = model.generate(**inputs, output_audio=True) |
| 110 | +processor.save_audio(audio, "example_with_context.wav") |
| 111 | +``` |
| 112 | + |
| 113 | +### Batched Inference |
| 114 | + |
| 115 | +CSM supports batched inference! |
| 116 | + |
| 117 | +```python |
| 118 | +import torch |
| 119 | +from transformers import CsmForConditionalGeneration, AutoProcessor |
| 120 | +from datasets import load_dataset, Audio |
| 121 | + |
| 122 | +model_id = "eustlb/csm-1b" |
| 123 | +device = "cuda" if torch.cuda.is_available() else "cpu" |
| 124 | + |
| 125 | +# load the model and the processor |
| 126 | +processor = AutoProcessor.from_pretrained(model_id) |
| 127 | +model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device) |
| 128 | + |
| 129 | +# prepare the inputs |
| 130 | +ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train") |
| 131 | +# ensure the audio is 24kHz |
| 132 | +ds = ds.cast_column("audio", Audio(sampling_rate=24000)) |
| 133 | +# here a batch with two prompts |
| 134 | +conversation = [ |
| 135 | + [ |
| 136 | + { |
| 137 | + "role": f"{ds[0]['speaker_id']}", |
| 138 | + "content": [ |
| 139 | + {"type": "text", "text": ds[0]["text"]}, |
| 140 | + {"type": "audio", "path": ds[0]["audio"]["array"]}, |
| 141 | + ], |
| 142 | + }, |
| 143 | + { |
| 144 | + "role": f"{ds[1]['speaker_id']}", |
| 145 | + "content": [ |
| 146 | + {"type": "text", "text": ds[1]["text"]}, |
| 147 | + ], |
| 148 | + }, |
| 149 | + ], |
| 150 | + [ |
| 151 | + { |
| 152 | + "role": f"{ds[0]['speaker_id']}", |
| 153 | + "content": [ |
| 154 | + {"type": "text", "text": ds[0]["text"]}, |
| 155 | + ], |
| 156 | + } |
| 157 | + ], |
| 158 | +] |
| 159 | +inputs = processor.apply_chat_template( |
| 160 | + conversation, |
| 161 | + tokenize=True, |
| 162 | + return_dict=True, |
| 163 | +).to(device) |
| 164 | + |
| 165 | +audio = model.generate(**inputs, output_audio=True) |
| 166 | +processor.save_audio(audio, [f"speech_batch_idx_{i}.wav" for i in range(len(audio))]) |
| 167 | +``` |
| 168 | + |
| 169 | +### Making The Model Go Brrr |
| 170 | + |
| 171 | +CSM supports full-graph compilation with CUDA graphs! |
| 172 | + |
| 173 | +```python |
| 174 | +import torch |
| 175 | +import copy |
| 176 | +from transformers import CsmForConditionalGeneration, AutoProcessor |
| 177 | +from datasets import load_dataset |
| 178 | + |
| 179 | +model_id = "eustlb/csm-1b" |
| 180 | +device = "cuda" |
| 181 | + |
| 182 | +# set logs to ensure no recompilation and graph breaks |
| 183 | +torch._logging.set_logs(graph_breaks=True, recompiles=True, cudagraphs=True) |
| 184 | + |
| 185 | +# load the model and the processor |
| 186 | +processor = AutoProcessor.from_pretrained(model_id) |
| 187 | +model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device) |
| 188 | + |
| 189 | +# use static cache, enabling automatically torch compile with fullgraph and reduce-overhead |
| 190 | +model.generation_config.max_length = 250 # big enough to avoid recompilation |
| 191 | +model.generation_config.max_new_tokens = None # would take precedence over max_length |
| 192 | +model.generation_config.cache_implementation = "static" |
| 193 | +model.depth_decoder.generation_config.cache_implementation = "static" |
| 194 | + |
| 195 | +# generation kwargs |
| 196 | +gen_kwargs = { |
| 197 | + "do_sample": False, |
| 198 | + "depth_decoder_do_sample": False, |
| 199 | + "temperature": 1.0, |
| 200 | + "depth_decoder_temperature": 1.0, |
| 201 | +} |
| 202 | + |
| 203 | +# Define a timing decorator |
| 204 | +class TimerContext: |
| 205 | + def __init__(self, name="Execution"): |
| 206 | + self.name = name |
| 207 | + self.start_event = None |
| 208 | + self.end_event = None |
| 209 | + |
| 210 | + def __enter__(self): |
| 211 | + # Use CUDA events for more accurate GPU timing |
| 212 | + self.start_event = torch.cuda.Event(enable_timing=True) |
| 213 | + self.end_event = torch.cuda.Event(enable_timing=True) |
| 214 | + self.start_event.record() |
| 215 | + return self |
| 216 | + |
| 217 | + def __exit__(self, *args): |
| 218 | + self.end_event.record() |
| 219 | + torch.cuda.synchronize() |
| 220 | + elapsed_time = self.start_event.elapsed_time(self.end_event) / 1000.0 |
| 221 | + print(f"{self.name} time: {elapsed_time:.4f} seconds") |
| 222 | + |
| 223 | +# prepare the inputs |
| 224 | +ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train") |
| 225 | + |
| 226 | +conversation = [ |
| 227 | + { |
| 228 | + "role": f"{ds[0]['speaker_id']}", |
| 229 | + "content": [ |
| 230 | + {"type": "text", "text": ds[0]["text"]}, |
| 231 | + {"type": "audio", "path": ds[0]["audio"]["array"]}, |
| 232 | + ], |
| 233 | + }, |
| 234 | + { |
| 235 | + "role": f"{ds[1]['speaker_id']}", |
| 236 | + "content": [ |
| 237 | + {"type": "text", "text": ds[1]["text"]}, |
| 238 | + {"type": "audio", "path": ds[1]["audio"]["array"]}, |
| 239 | + ], |
| 240 | + }, |
| 241 | + { |
| 242 | + "role": f"{ds[2]['speaker_id']}", |
| 243 | + "content": [ |
| 244 | + {"type": "text", "text": ds[2]["text"]}, |
| 245 | + ], |
| 246 | + }, |
| 247 | +] |
| 248 | + |
| 249 | +padded_inputs_1 = processor.apply_chat_template( |
| 250 | + conversation, |
| 251 | + tokenize=True, |
| 252 | + return_dict=True, |
| 253 | +).to(device) |
| 254 | + |
| 255 | +print("\n" + "="*50) |
| 256 | +print("First generation - compiling and recording CUDA graphs...") |
| 257 | +with TimerContext("First generation"): |
| 258 | + _ = model.generate(**padded_inputs_1, **gen_kwargs) |
| 259 | +print("="*50) |
| 260 | + |
| 261 | +print("\n" + "="*50) |
| 262 | +print("Second generation - fast !!!") |
| 263 | +with TimerContext("Second generation"): |
| 264 | + _ = model.generate(**padded_inputs_1, **gen_kwargs) |
| 265 | +print("="*50) |
| 266 | + |
| 267 | +# now with different inputs |
| 268 | +conversation = [ |
| 269 | + { |
| 270 | + "role": f"{ds[0]['speaker_id']}", |
| 271 | + "content": [ |
| 272 | + {"type": "text", "text": ds[2]["text"]}, |
| 273 | + {"type": "audio", "path": ds[2]["audio"]["array"]}, |
| 274 | + ], |
| 275 | + }, |
| 276 | + { |
| 277 | + "role": f"{ds[1]['speaker_id']}", |
| 278 | + "content": [ |
| 279 | + {"type": "text", "text": ds[3]["text"]}, |
| 280 | + {"type": "audio", "path": ds[3]["audio"]["array"]}, |
| 281 | + ], |
| 282 | + }, |
| 283 | + { |
| 284 | + "role": f"{ds[2]['speaker_id']}", |
| 285 | + "content": [ |
| 286 | + {"type": "text", "text": ds[4]["text"]}, |
| 287 | + ], |
| 288 | + }, |
| 289 | +] |
| 290 | +padded_inputs_2 = processor.apply_chat_template( |
| 291 | + conversation, |
| 292 | + tokenize=True, |
| 293 | + return_dict=True, |
| 294 | +).to(device) |
| 295 | + |
| 296 | +print("\n" + "="*50) |
| 297 | +print("Generation with other inputs!") |
| 298 | +with TimerContext("Generation with different inputs"): |
| 299 | + _ = model.generate(**padded_inputs_2, **gen_kwargs) |
| 300 | +print("="*50) |
| 301 | +``` |
| 302 | + |
| 303 | +### Training |
| 304 | + |
| 305 | +CSM Transformers integration supports training! |
| 306 | + |
| 307 | +```python |
| 308 | +from transformers import CsmForConditionalGeneration, AutoProcessor |
| 309 | +from datasets import load_dataset, Audio |
| 310 | + |
| 311 | +model_id = "eustlb/csm-1b" |
| 312 | +device = "cuda" |
| 313 | + |
| 314 | +# load the model and the processor |
| 315 | +processor = AutoProcessor.from_pretrained(model_id) |
| 316 | +model = CsmForConditionalGeneration.from_pretrained(model_id, device_map=device) |
| 317 | +model.train() |
| 318 | + |
| 319 | +ds = load_dataset("hf-internal-testing/dailytalk-dummy", split="train") |
| 320 | +# ensure the audio is 24kHz |
| 321 | +ds = ds.cast_column("audio", Audio(sampling_rate=24000)) |
| 322 | +conversation = [] |
| 323 | + |
| 324 | +# context |
| 325 | +for text, audio, speaker_id in zip(ds[:4]["text"], ds[:4]["audio"], ds[:4]["speaker_id"]): |
| 326 | + conversation.append( |
| 327 | + { |
| 328 | + "role": f"{speaker_id}", |
| 329 | + "content": [{"type": "text", "text": text}, {"type": "audio", "path": audio["array"]}], |
| 330 | + } |
| 331 | + ) |
| 332 | + |
| 333 | +inputs = processor.apply_chat_template( |
| 334 | + conversation, |
| 335 | + tokenize=True, |
| 336 | + return_dict=True, |
| 337 | + output_labels=True, |
| 338 | +).to(device) |
| 339 | + |
| 340 | +out = model(**inputs) |
| 341 | +out.loss.backward() |
| 342 | +``` |
| 343 | + |
| 344 | +This model was contributed by [Eustache Le Bihan](https://huggingface.co/eustlb). |
| 345 | +The original code can be found [here](https://github.com/SesameAILabs/csm). |
| 346 | + |
| 347 | + |
| 348 | +## CsmConfig |
| 349 | + |
| 350 | +[[autodoc]] CsmConfig |
| 351 | + |
| 352 | +## CsmDepthDecoderConfig |
| 353 | + |
| 354 | +[[autodoc]] CsmDepthDecoderConfig |
| 355 | + |
| 356 | +## CsmProcessor |
| 357 | + |
| 358 | +[[autodoc]] CsmProcessor |
| 359 | + - __call__ |
| 360 | + |
| 361 | +## CsmForConditionalGeneration |
| 362 | + |
| 363 | +[[autodoc]] CsmForConditionalGeneration |
| 364 | + - forward |
| 365 | + - generate |
| 366 | + |
| 367 | +## CsmDepthDecoderForCausalLM |
| 368 | + |
| 369 | +[[autodoc]] CsmDepthDecoderForCausalLM |
| 370 | + |
| 371 | +## CsmDepthDecoderModel |
| 372 | + |
| 373 | +[[autodoc]] CsmDepthDecoderModel |
| 374 | + |
| 375 | +## CsmBackboneModel |
| 376 | + |
| 377 | +[[autodoc]] CsmBackboneModel |
0 commit comments