Skip to content

Commit 3a785f1

Browse files
grimoireSingleZombieRunningLeonVVssssskAllentDan
authored
[Refactor] Refactor codebase (open-mmlab#220)
* [WIP] Refactor v2.0 (open-mmlab#163) * Refactor backend wrapper * Refactor mmdet.inference * Fix * merge * refactor utils * Use deployer and deploy_model to manage pipeline * Resolve comments * Add a real inference api function * rename wrappers * Set execute to private method * Rename deployer deploy_model * Refactor task * remove type hint * lint * Resolve comments * resolve comments * lint * docstring * [Fix]: Fix bugs in details in refactor branch (open-mmlab#192) * [WIP] Refactor v2.0 (open-mmlab#163) * Refactor backend wrapper * Refactor mmdet.inference * Fix * merge * refactor utils * Use deployer and deploy_model to manage pipeline * Resolve comments * Add a real inference api function * rename wrappers * Set execute to private method * Rename deployer deploy_model * Refactor task * remove type hint * lint * Resolve comments * resolve comments * lint * docstring * Fix errors * lint * resolve comments * fix bugs * conflict * lint and typo * Resolve comment * refactor mmseg (open-mmlab#201) * support mmseg * fix docstring * fix docstring * [Refactor]: Get the count of backend files (open-mmlab#202) * Fix backend files * resolve comments * lint * Fix ncnn * [Refactor]: Refactor folders of mmdet (open-mmlab#200) * Move folders * lint * test object detection model * lint * reset changes * fix openvino * resolve comments * __init__.py * Fix path * [Refactor]: move mmseg (open-mmlab#206) * [Refactor]: Refactor mmedit (open-mmlab#205) * feature mmedit * edit2.0 * edit * refactor mmedit * fix __init__.py * fix __init__ * fix formai * fix comment * fix comment * Fix wrong func_name of ConvFCBBoxHead (open-mmlab#209) * [Refactor]: Refactor mmdet unit test (open-mmlab#207) * Move folders * lint * test object detection model * lint * WIP * remove print * finish unit test * Fix tests * resolve comments * Add mask test * lint * resolve comments * Refine cfg file * Move files * add files * Fix path * [Unittest]: Refine the unit tests in mmdet open-mmlab#214 * [Refactor] refactor mmocr to mmdeploy/codebase (open-mmlab#213) * refactor mmocr to mmdeploy/codebase * fix docstring of show_result * fix docstring of visualize * refine docstring * replace print with logging * refince codes * resolve comments * resolve comments * [Refactor]: mmseg tests (open-mmlab#210) * refactor mmseg tests * rename test_codebase * update * add model.py * fix * [Refactor] Refactor mmcls and the package (open-mmlab#217) * refactor mmcls * fix yapf * fix isort * refactor-mmcls-package * fix print to logging * fix docstrings according to others comments * fix comments * fix comments * fix allentdans comment in pr215 * remove mmocr init * [Refactor] Refactor mmedit tests (open-mmlab#212) * feature mmedit * edit2.0 * edit * refactor mmedit * fix __init__.py * fix __init__ * fix formai * fix comment * fix comment * buff * edit test and code refactor * refactor dir * refactor tests/mmedit * fix docstring * add test coverage * fix lint * fix comment * fix comment * Update typehint (open-mmlab#216) * update type hint * update docstring * update * remove file * fix ppl * Refine get_predefined_partition_cfg * fix tensorrt version > 8 * move parse_cuda_device_id to device.py * Fix cascade * onnx2ncnn docstring Co-authored-by: Yifan Zhou <[email protected]> Co-authored-by: RunningLeon <[email protected]> Co-authored-by: VVsssssk <[email protected]> Co-authored-by: AllentDan <[email protected]> Co-authored-by: hanrui1sensetime <[email protected]>
1 parent d742b42 commit 3a785f1

File tree

220 files changed

+6698
-5837
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

220 files changed

+6698
-5837
lines changed

backend_ops/ncnn/pyncnn_ext/CMakeLists.txt

+1-1
Original file line numberDiff line numberDiff line change
@@ -11,4 +11,4 @@ pybind11_add_module(ncnn_ext ncnn_ext.cpp)
1111
target_link_libraries(ncnn_ext PUBLIC ncnn ${SHARED_TARGET})
1212
set_target_properties(
1313
ncnn_ext PROPERTIES LIBRARY_OUTPUT_DIRECTORY
14-
${CMAKE_SOURCE_DIR}/mmdeploy/apis/ncnn)
14+
${CMAKE_SOURCE_DIR}/mmdeploy/backend/ncnn)

mmdeploy/__init__.py

-25
Original file line numberDiff line numberDiff line change
@@ -7,28 +7,3 @@
77
importlib.import_module('mmdeploy.mmcv')
88
else:
99
logging.debug('mmcv is not installed.')
10-
11-
if importlib.util.find_spec('mmcls'):
12-
importlib.import_module('mmdeploy.mmcls')
13-
else:
14-
logging.debug('mmcls is not installed.')
15-
16-
if importlib.util.find_spec('mmdet'):
17-
importlib.import_module('mmdeploy.mmdet')
18-
else:
19-
logging.debug('mmdet is not installed.')
20-
21-
if importlib.util.find_spec('mmseg'):
22-
importlib.import_module('mmdeploy.mmseg')
23-
else:
24-
logging.debug('mmseg is not installed.')
25-
26-
if importlib.util.find_spec('mmocr'):
27-
importlib.import_module('mmdeploy.mmocr')
28-
else:
29-
logging.debug('mmocr is not installed.')
30-
31-
if importlib.util.find_spec('mmedit'):
32-
importlib.import_module('mmdeploy.mmedit')
33-
else:
34-
logging.debug('mmedit is not installed.')

mmdeploy/apis/__init__.py

+5-7
Original file line numberDiff line numberDiff line change
@@ -2,13 +2,11 @@
22
from .extract_model import extract_model
33
from .inference import inference_model
44
from .pytorch2onnx import torch2onnx, torch2onnx_impl
5-
from .test import post_process_outputs, single_gpu_test
6-
from .utils import (build_dataloader, build_dataset, get_tensor_from_input,
7-
init_backend_model)
5+
from .utils import build_task_processor, get_predefined_partition_cfg
6+
from .visualize import visualize_model
87

98
__all__ = [
10-
'create_calib_table', 'torch2onnx_impl', 'torch2onnx', 'extract_model',
11-
'inference_model', 'init_backend_model', 'single_gpu_test',
12-
'post_process_outputs', 'build_dataset', 'get_tensor_from_input',
13-
'build_dataloader'
9+
'create_calib_table', 'extract_model', 'inference_model', 'torch2onnx',
10+
'torch2onnx_impl', 'build_task_processor', 'get_predefined_partition_cfg',
11+
'visualize_model'
1412
]

mmdeploy/apis/calibration.py

+14-15
Original file line numberDiff line numberDiff line change
@@ -7,9 +7,7 @@
77

88
from mmdeploy.core import (RewriterContext, patch_model,
99
reset_mark_function_count)
10-
from mmdeploy.utils import cfg_apply_marks, get_codebase, load_config
11-
from .utils import (build_dataloader, build_dataset, get_tensor_from_input,
12-
init_pytorch_model, run_inference)
10+
from mmdeploy.utils import cfg_apply_marks, load_config
1311

1412

1513
def create_calib_table(calib_file: str,
@@ -46,32 +44,33 @@ def create_calib_table(calib_file: str,
4644
# load dataset_cfg if necessary
4745
dataset_cfg = load_config(dataset_cfg)[0]
4846

49-
codebase = get_codebase(deploy_cfg)
47+
from mmdeploy.apis.utils import build_task_processor
48+
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
49+
5050
apply_marks = cfg_apply_marks(deploy_cfg)
5151
backend = 'default'
52-
model = init_pytorch_model(
53-
codebase, model_cfg, model_checkpoint, device=device)
54-
dataset = build_dataset(codebase, dataset_cfg, dataset_type)
52+
model = task_processor.init_pytorch_model(model_checkpoint)
53+
dataset = task_processor.build_dataset(dataset_cfg, dataset_type)
5554

5655
# patch model
5756
patched_model = patch_model(model, cfg=deploy_cfg, backend=backend)
5857

59-
with h5py.File(calib_file, mode='w') as calib_file:
60-
calib_data_group = calib_file.create_group('calib_data')
58+
with h5py.File(calib_file, mode='w') as file:
59+
calib_data_group = file.create_group('calib_data')
6160

6261
if not apply_marks:
6362
# create end2end group
6463
input_data_group = calib_data_group.create_group('end2end')
6564
input_group = input_data_group.create_group('input')
66-
dataloader = build_dataloader(
67-
codebase, dataset, 1, 1, dist=False, shuffle=False)
65+
dataloader = task_processor.build_dataloader(
66+
dataset, 1, 1, dist=False, shuffle=False)
6867
patched_model = MMDataParallel(patched_model, device_ids=[device_id])
6968
prog_bar = mmcv.ProgressBar(len(dataset))
7069
for data_id, input_data in enumerate(dataloader):
7170

7271
if not apply_marks:
7372
# save end2end data
74-
input_tensor = get_tensor_from_input(codebase, input_data)
73+
input_tensor = task_processor.get_tensor_from_input(input_data)
7574
input_ndarray = input_tensor.detach().cpu().numpy()
7675
input_group.create_dataset(
7776
str(data_id),
@@ -84,10 +83,10 @@ def create_calib_table(calib_file: str,
8483
cfg=deploy_cfg,
8584
backend=backend,
8685
create_calib=True,
87-
calib_file=calib_file,
86+
calib_file=file,
8887
data_id=data_id):
8988
reset_mark_function_count()
90-
_ = run_inference(codebase, input_data, patched_model)
91-
calib_file.flush()
89+
_ = task_processor.run_inference(patched_model, input_data)
90+
file.flush()
9291

9392
prog_bar.update()

mmdeploy/apis/extract_model.py

+1-1
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ def extract_model(model: Union[str, onnx.ModelProto],
1616
start_name_map: Optional[Dict[str, str]] = None,
1717
end_name_map: Optional[Dict[str, str]] = None,
1818
dynamic_axes: Optional[Dict[str, Dict[int, str]]] = None,
19-
save_file: Optional[str] = None):
19+
save_file: Optional[str] = None) -> onnx.ModelProto:
2020
"""Extract sub-model from an ONNX model.
2121
2222
The sub-model is defined by the names of the input and output tensors

mmdeploy/apis/inference.py

+15-50
Original file line numberDiff line numberDiff line change
@@ -1,75 +1,40 @@
1-
from typing import Optional, Sequence, Union
1+
from typing import Any, Sequence, Union
22

33
import mmcv
44
import numpy as np
55
import torch
66

7-
from mmdeploy.utils import (Backend, get_backend, get_codebase,
8-
get_input_shape, get_task_type, load_config)
9-
from .utils import (create_input, init_backend_model, init_pytorch_model,
10-
run_inference, visualize)
7+
from mmdeploy.utils import get_input_shape, load_config
118

129

1310
def inference_model(model_cfg: Union[str, mmcv.Config],
1411
deploy_cfg: Union[str, mmcv.Config],
15-
model: Union[str, Sequence[str], torch.nn.Module],
16-
img: Union[str, np.ndarray],
17-
device: str,
18-
backend: Optional[Backend] = None,
19-
output_file: Optional[str] = None,
20-
show_result: bool = False):
12+
backend_files: Sequence[str], img: Union[str, np.ndarray],
13+
device: str) -> Any:
2114
"""Run inference with PyTorch or backend model and show results.
2215
2316
Args:
2417
model_cfg (str | mmcv.Config): Model config file or Config object.
2518
deploy_cfg (str | mmcv.Config): Deployment config file or Config
2619
object.
27-
model (str | list[str], torch.nn.Module): Input model or file(s).
20+
backend_files (Sequence[str]): Input backend model file(s).
2821
img (str | np.ndarray): Input image file or numpy array for inference.
2922
device (str): A string specifying device type.
30-
backend (Backend): Specifying backend type, defaults to `None`.
31-
output_file (str): Output file to save visualized image, defaults to
32-
`None`. Only valid if `show_result` is set to `False`.
33-
show_result (bool): Whether to show plotted image in windows, defaults
34-
to `False`.
23+
24+
Returns:
25+
Any: The inference results
3526
"""
3627
deploy_cfg, model_cfg = load_config(deploy_cfg, model_cfg)
3728

38-
codebase = get_codebase(deploy_cfg)
39-
task = get_task_type(deploy_cfg)
40-
input_shape = get_input_shape(deploy_cfg)
41-
if backend is None:
42-
backend = get_backend(deploy_cfg)
43-
44-
if isinstance(model, str):
45-
model = [model]
29+
from mmdeploy.apis.utils import build_task_processor
30+
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
4631

47-
if isinstance(model, (list, tuple)):
48-
assert len(model) > 0, 'Model should have at least one element.'
49-
assert all([isinstance(m, str) for m in model]), 'All elements in the \
50-
list should be str'
32+
model = task_processor.init_backend_model(backend_files)
5133

52-
if backend == Backend.PYTORCH:
53-
model = init_pytorch_model(codebase, model_cfg, model[0], device)
54-
else:
55-
device_id = -1 if device == 'cpu' else 0
56-
model = init_backend_model(
57-
model,
58-
model_cfg=model_cfg,
59-
deploy_cfg=deploy_cfg,
60-
device_id=device_id)
61-
62-
model_inputs, _ = create_input(codebase, task, model_cfg, img, input_shape,
63-
device)
34+
input_shape = get_input_shape(deploy_cfg)
35+
model_inputs, _ = task_processor.create_input(img, input_shape)
6436

6537
with torch.no_grad():
66-
result = run_inference(codebase, model_inputs, model)
38+
result = task_processor.run_inference(model, model_inputs)
6739

68-
visualize(
69-
codebase,
70-
img,
71-
result=result,
72-
model=model,
73-
output_file=output_file,
74-
backend=backend,
75-
show_result=show_result)
40+
return result

mmdeploy/apis/ncnn/__init__.py

+5-25
Original file line numberDiff line numberDiff line change
@@ -1,28 +1,8 @@
1-
import importlib
2-
import os.path as osp
3-
4-
from .init_plugins import get_onnx2ncnn_path, get_ops_path
5-
6-
__all__ = ['get_ops_path', 'get_onnx2ncnn_path']
7-
8-
9-
def is_available():
10-
"""Check whether ncnn with extension is installed.
11-
12-
Returns:
13-
bool: True if ncnn and its extension are installed.
14-
"""
15-
ncnn_ops_path = get_ops_path()
16-
if not osp.exists(ncnn_ops_path):
17-
return False
18-
has_pyncnn = importlib.util.find_spec('ncnn') is not None
19-
has_pyncnn_ext = importlib.util.find_spec(
20-
'mmdeploy.apis.ncnn.ncnn_ext') is not None
21-
22-
return has_pyncnn and has_pyncnn_ext
1+
from mmdeploy.backend.ncnn import is_available
232

3+
__all__ = ['is_available']
244

255
if is_available():
26-
from .ncnn_utils import NCNNWrapper
27-
28-
__all__ += ['NCNNWrapper']
6+
from mmdeploy.backend.ncnn.onnx2ncnn import (onnx2ncnn,
7+
get_output_model_file)
8+
__all__ += ['onnx2ncnn', 'get_output_model_file']

mmdeploy/apis/onnxruntime/__init__.py

+2-21
Original file line numberDiff line numberDiff line change
@@ -1,22 +1,3 @@
1-
import importlib
2-
import os.path as osp
1+
from mmdeploy.backend.onnxruntime import is_available
32

4-
from .init_plugins import get_ops_path
5-
6-
7-
def is_available():
8-
"""Check whether onnxruntime and its custom ops are installed.
9-
10-
Returns:
11-
bool: True if onnxruntime package is installed and its
12-
custom ops are compiled.
13-
"""
14-
onnxruntime_op_path = get_ops_path()
15-
if not osp.exists(onnxruntime_op_path):
16-
return False
17-
return importlib.util.find_spec('onnxruntime') is not None
18-
19-
20-
if is_available():
21-
from .onnxruntime_utils import ORTWrapper
22-
__all__ = ['get_ops_path', 'ORTWrapper']
3+
__all__ = ['is_available']

mmdeploy/apis/openvino/__init__.py

+7-15
Original file line numberDiff line numberDiff line change
@@ -1,19 +1,11 @@
1-
import importlib
2-
3-
4-
def is_available() -> bool:
5-
"""Checking if OpenVINO is installed.
6-
7-
Returns:
8-
bool: True if OpenVINO is installed.
9-
"""
10-
return importlib.util.find_spec('openvino') is not None
1+
from mmdeploy.backend.openvino import is_available
112

3+
__all__ = ['is_available']
124

135
if is_available():
14-
from .openvino_utils import OpenVINOWrapper, get_input_shape_from_cfg
15-
from .onnx2openvino import (onnx2openvino, get_output_model_file)
16-
__all__ = [
17-
'OpenVINOWrapper', 'onnx2openvino', 'get_output_model_file',
18-
'get_input_shape_from_cfg'
6+
from mmdeploy.backend.openvino.onnx2openvino \
7+
import onnx2openvino, get_output_model_file
8+
from .utils import get_input_shape_from_cfg
9+
__all__ += [
10+
'onnx2openvino', 'get_output_model_file', 'get_input_shape_from_cfg'
1911
]

mmdeploy/apis/openvino/utils.py

+22
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,22 @@
1+
from typing import List
2+
3+
import mmcv
4+
5+
6+
def get_input_shape_from_cfg(config: mmcv.Config) -> List[int]:
7+
"""Get the input shape from the model config for OpenVINO Model Optimizer.
8+
9+
Args:
10+
config (mmcv.Config): Model config.
11+
Returns:
12+
List[int]: The input shape in [1, 3, H, W] format from config
13+
or [1, 3, 800, 1344].
14+
"""
15+
shape = []
16+
test_pipeline = config.get('test_pipeline', None)
17+
if test_pipeline is not None:
18+
img_scale = test_pipeline[1]['img_scale']
19+
shape = [1, 3, img_scale[1], img_scale[0]]
20+
else:
21+
shape = [1, 3, 800, 1344]
22+
return shape

mmdeploy/apis/ppl/__init__.py

+5-13
Original file line numberDiff line numberDiff line change
@@ -1,16 +1,8 @@
1-
import importlib
2-
3-
4-
def is_available():
5-
"""Check whether ppl is installed.
6-
7-
Returns:
8-
bool: True if ppl package is installed.
9-
"""
10-
return importlib.util.find_spec('pyppl') is not None
1+
from mmdeploy.backend.ppl import is_available
112

3+
__all__ = ['is_available']
124

135
if is_available():
14-
from .ppl_utils import PPLWrapper, register_engines
15-
from .onnx2ppl import onnx2ppl
16-
__all__ = ['register_engines', 'PPLWrapper', 'onnx2ppl']
6+
from mmdeploy.backend.ppl import onnx2ppl
7+
8+
__all__ += ['onnx2ppl']

mmdeploy/apis/pytorch2onnx.py

+7-9
Original file line numberDiff line numberDiff line change
@@ -5,9 +5,8 @@
55
import torch
66

77
from mmdeploy.core import RewriterContext, patch_model
8-
from mmdeploy.utils import (get_backend, get_codebase, get_input_shape,
9-
get_onnx_config, get_task_type, load_config)
10-
from .utils import create_input, init_pytorch_model
8+
from mmdeploy.utils import (get_backend, get_input_shape, get_onnx_config,
9+
load_config)
1110

1211

1312
def torch2onnx_impl(model: torch.nn.Module, input: torch.Tensor,
@@ -74,14 +73,13 @@ def torch2onnx(img: Any,
7473
mmcv.mkdir_or_exist(osp.abspath(work_dir))
7574
output_file = osp.join(work_dir, save_file)
7675

77-
codebase = get_codebase(deploy_cfg)
78-
task = get_task_type(deploy_cfg)
7976
input_shape = get_input_shape(deploy_cfg)
8077

81-
torch_model = init_pytorch_model(codebase, model_cfg, model_checkpoint,
82-
device)
83-
data, model_inputs = create_input(codebase, task, model_cfg, img,
84-
input_shape, device)
78+
from mmdeploy.apis import build_task_processor
79+
task_processor = build_task_processor(model_cfg, deploy_cfg, device)
80+
81+
torch_model = task_processor.init_pytorch_model(model_checkpoint)
82+
data, model_inputs = task_processor.create_input(img, input_shape)
8583
if not isinstance(model_inputs, torch.Tensor):
8684
model_inputs = model_inputs[0]
8785

0 commit comments

Comments
 (0)