|
1 | 1 | ## ONNX Runtime Ops
|
2 | 2 |
|
3 |
| -### Installation |
| 3 | +<!-- TOC --> |
| 4 | + |
| 5 | +- [ONNX Runtime Ops](#onnx-runtime-ops) |
| 6 | + - [RoIAlign](#roialign) |
| 7 | + - [Description](#description) |
| 8 | + - [Parameters](#parameters) |
| 9 | + - [Inputs](#inputs) |
| 10 | + - [Outputs](#outputs) |
| 11 | + - [Type Constraints](#type-constraints) |
| 12 | + - [grid_sampler](#grid_sampler) |
| 13 | + - [Description](#description-1) |
| 14 | + - [Parameters](#parameters-1) |
| 15 | + - [Inputs](#inputs-1) |
| 16 | + - [Outputs](#outputs-1) |
| 17 | + - [Type Constraints](#type-constraints-1) |
| 18 | + - [MMCVModulatedDeformConv2d](#mmcvmodulateddeformconv2d) |
| 19 | + - [Description](#description-2) |
| 20 | + - [Parameters](#parameters-2) |
| 21 | + - [Inputs](#inputs-2) |
| 22 | + - [Outputs](#outputs-2) |
| 23 | + - [Type Constraints](#type-constraints-2) |
| 24 | + |
| 25 | +<!-- TOC --> |
| 26 | + |
| 27 | +### RoIAlign |
| 28 | + |
| 29 | +#### Description |
| 30 | + |
| 31 | +Perform RoIAlign on output feature, used in bbox_head of most two-stage detectors. |
| 32 | + |
| 33 | +#### Parameters |
| 34 | + |
| 35 | +| Type | Parameter | Description | |
| 36 | +| ------- | ---------------- | ------------------------------------------------------------------------------------------------------------- | |
| 37 | +| `int` | `output_height` | height of output roi | |
| 38 | +| `int` | `output_width` | width of output roi | |
| 39 | +| `float` | `spatial_scale` | used to scale the input boxes | |
| 40 | +| `int` | `sampling_ratio` | number of input samples to take for each output sample. `0` means to take samples densely for current models. | |
| 41 | +| `str` | `mode` | pooling mode in each bin. `avg` or `max` | |
| 42 | +| `int` | `aligned` | If `aligned=0`, use the legacy implementation in MMDetection. Else, align the results more perfectly. | |
| 43 | + |
| 44 | +#### Inputs |
| 45 | + |
| 46 | +<dl> |
| 47 | +<dt><tt>input</tt>: T</dt> |
| 48 | +<dd>Input feature map; 4D tensor of shape (N, C, H, W), where N is the batch size, C is the numbers of channels, H and W are the height and width of the data.</dd> |
| 49 | +<dt><tt>rois</tt>: T</dt> |
| 50 | +<dd>RoIs (Regions of Interest) to pool over; 2-D tensor of shape (num_rois, 5) given as [[batch_index, x1, y1, x2, y2], ...]. The RoIs' coordinates are the coordinate system of input.</dd> |
| 51 | +</dl> |
| 52 | + |
| 53 | +#### Outputs |
| 54 | + |
| 55 | +<dl> |
| 56 | +<dt><tt>feat</tt>: T</dt> |
| 57 | +<dd>RoI pooled output, 4-D tensor of shape (num_rois, C, output_height, output_width). The r-th batch element feat[r-1] is a pooled feature map corresponding to the r-th RoI RoIs[r-1].<dd> |
| 58 | +</dl> |
| 59 | + |
| 60 | +#### Type Constraints |
| 61 | + |
| 62 | +- T:tensor(float32) |
| 63 | + |
| 64 | +### grid_sampler |
| 65 | + |
| 66 | +#### Description |
| 67 | + |
| 68 | +Perform sample from `input` with pixel locations from `grid`. |
| 69 | + |
| 70 | +#### Parameters |
| 71 | + |
| 72 | +| Type | Parameter | Description | |
| 73 | +| ----- | -------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |
| 74 | +| `int` | `interpolation_mode` | Interpolation mode to calculate output values. (0: `bilinear` , 1: `nearest`) | |
| 75 | +| `int` | `padding_mode` | Padding mode for outside grid values. (0: `zeros`, 1: `border`, 2: `reflection`) | |
| 76 | +| `int` | `align_corners` | If `align_corners=1`, the extrema (`-1` and `1`) are considered as referring to the center points of the input's corner pixels. If `align_corners=0`, they are instead considered as referring to the corner points of the input's corner pixels, making the sampling more resolution agnostic. | |
| 77 | + |
| 78 | +#### Inputs |
| 79 | + |
| 80 | +<dl> |
| 81 | +<dt><tt>input</tt>: T</dt> |
| 82 | +<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the numbers of channels, inH and inW are the height and width of the data.</dd> |
| 83 | +<dt><tt>grid</tt>: T</dt> |
| 84 | +<dd>Input offset; 4-D tensor of shape (N, outH, outW, 2), where outH and outW are the height and width of offset and output. </dd> |
| 85 | +</dl> |
| 86 | + |
| 87 | +#### Outputs |
| 88 | + |
| 89 | +<dl> |
| 90 | +<dt><tt>output</tt>: T</dt> |
| 91 | +<dd>Output feature; 4-D tensor of shape (N, C, outH, outW).</dd> |
| 92 | +</dl> |
| 93 | + |
| 94 | +#### Type Constraints |
| 95 | + |
| 96 | +- T:tensor(float32, Linear) |
| 97 | + |
| 98 | +### MMCVModulatedDeformConv2d |
| 99 | + |
| 100 | +#### Description |
| 101 | + |
| 102 | +Perform Modulated Deformable Convolution on input feature, read [Deformable ConvNets v2: More Deformable, Better Results](https://arxiv.org/abs/1811.11168?from=timeline) for detail. |
| 103 | + |
| 104 | +#### Parameters |
| 105 | + |
| 106 | +| Type | Parameter | Description | |
| 107 | +| -------------- | ------------------- | ------------------------------------------------------------------------------------- | |
| 108 | +| `list of ints` | `stride` | The stride of the convolving kernel. (sH, sW) | |
| 109 | +| `list of ints` | `padding` | Paddings on both sides of the input. (padH, padW) | |
| 110 | +| `list of ints` | `dilation` | The spacing between kernel elements. (dH, dW) | |
| 111 | +| `int` | `deformable_groups` | Groups of deformable offset. | |
| 112 | +| `int` | `groups` | Split input into groups. `input_channel` should be divisible by the number of groups. | |
| 113 | + |
| 114 | +#### Inputs |
| 115 | + |
| 116 | +<dl> |
| 117 | +<dt><tt>inputs[0]</tt>: T</dt> |
| 118 | +<dd>Input feature; 4-D tensor of shape (N, C, inH, inW), where N is the batch size, C is the number of channels, inH and inW are the height and width of the data.</dd> |
| 119 | +<dt><tt>inputs[1]</tt>: T</dt> |
| 120 | +<dd>Input offset; 4-D tensor of shape (N, deformable_group* 2* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd> |
| 121 | +<dt><tt>inputs[2]</tt>: T</dt> |
| 122 | +<dd>Input mask; 4-D tensor of shape (N, deformable_group* kH* kW, outH, outW), where kH and kW are the height and width of weight, outH and outW are the height and width of offset and output.</dd> |
| 123 | +<dt><tt>inputs[3]</tt>: T</dt> |
| 124 | +<dd>Input weight; 4-D tensor of shape (output_channel, input_channel, kH, kW).</dd> |
| 125 | +<dt><tt>inputs[4]</tt>: T, optional</dt> |
| 126 | +<dd>Input bias; 1-D tensor of shape (output_channel).</dd> |
| 127 | +</dl> |
| 128 | + |
| 129 | +#### Outputs |
| 130 | + |
| 131 | +<dl> |
| 132 | +<dt><tt>outputs[0]</tt>: T</dt> |
| 133 | +<dd>Output feature; 4-D tensor of shape (N, output_channel, outH, outW).</dd> |
| 134 | +</dl> |
| 135 | + |
| 136 | +#### Type Constraints |
| 137 | + |
| 138 | +- T:tensor(float32, Linear) |
0 commit comments