-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregistration.py
600 lines (427 loc) · 26.1 KB
/
registration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
from ctypes.wintypes import HACCEL
import numpy as np
import cv2
from skimage.color import rgb2hed, hed2rgb
import SimpleITK as sitk
import os
import pandas as pd
from tqdm import tqdm
# from skimage import data
print(os.getcwd())
prefix = 'Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/sample/info/1664369_MR16-1693 J3_Tumor_HE/'
fixed_path = 'Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/sample/info/1664369_MR16-1693 J3_Tumor_HE/1664369_MR16-1693 J3_Tumor_CD3___thumbnail_tilesize_x-8-y-8.png'
moving_path = 'Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/sample/info/1664369_MR16-1693 J3_Tumor_HE/1664369_MR16-1693 J3_Tumor_HE___thumbnail_tilesize_x-8-y-8.png'
reg_path = 'Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/sample/info/1664369_MR16-1693 J3_Tumor_HE/reg1.png'
def get_rgb2hed(thumbnail, write_basepath=None)->list:
'rgb -> [hematoxylin, Eosin, DAB]'
ihc_hed = rgb2hed(np.array(thumbnail))
null = np.zeros_like(ihc_hed[:, :, 0])
ihc_h = hed2rgb(np.stack((ihc_hed[:, :, 0], null, null), axis=-1)) # hematoxylin
ihc_e = hed2rgb(np.stack((null, ihc_hed[:, :, 1], null), axis=-1)) #Eosin
ihc_d = hed2rgb(np.stack((null, null, ihc_hed[:, :, 2]), axis=-1)) #DAB
if write_basepath:
# thumbnail.save(write_basepath+'/'+'hed.png')
cv2.imwrite(write_basepath+'/'+'ihc_h.png',ihc_h*255)
cv2.imwrite(write_basepath+'/'+'ihc_e.png',ihc_e*255)
cv2.imwrite(write_basepath+'/'+'ihc_d.png',ihc_d*255)
return [ihc_h, ihc_e, ihc_d]
def unmixHE(img, saveFile=None, Io=240, alpha=1, beta=0.15):
''' Normalize staining appearence of H&E stained images
Example use:
see test.py
Input:
I: RGB input image
Io: (optional) transmitted light intensity
Output:
Inorm: normalized image
H: hematoxylin image
E: eosin image
Reference:
A method for normalizing histology slides for quantitative analysis. M.
Macenko et al., ISBI 2009
'''
HERef = np.array([[0.5626, 0.2159],
[0.7201, 0.8012],
[0.4062, 0.5581]])
maxCRef = np.array([1.9705, 1.0308])
# define height and width of image
h, w, c = img.shape
# reshape image
img = img.reshape((-1,3))
# calculate optical density
OD = -np.log((img.astype(np.float)+1)/Io)
# remove transparent pixels
ODhat = OD[~np.any(OD<beta, axis=1)]
# compute eigenvectors
eigvals, eigvecs = np.linalg.eigh(np.cov(ODhat.T))
#eigvecs *= -1
#project on the plane spanned by the eigenvectors corresponding to the two
# largest eigenvalues
That = ODhat.dot(eigvecs[:,1:3])
phi = np.arctan2(That[:,1],That[:,0])
minPhi = np.percentile(phi, alpha)
maxPhi = np.percentile(phi, 100-alpha)
vMin = eigvecs[:,1:3].dot(np.array([(np.cos(minPhi), np.sin(minPhi))]).T)
vMax = eigvecs[:,1:3].dot(np.array([(np.cos(maxPhi), np.sin(maxPhi))]).T)
# a heuristic to make the vector corresponding to hematoxylin first and the
# one corresponding to eosin second
if vMin[0] > vMax[0]:
HE = np.array((vMin[:,0], vMax[:,0])).T
else:
HE = np.array((vMax[:,0], vMin[:,0])).T
# rows correspond to channels (RGB), columns to OD values
Y = np.reshape(OD, (-1, 3)).T
# determine concentrations of the individual stains
C = np.linalg.lstsq(HE,Y, rcond=None)[0]
# normalize stain concentrations
maxC = np.array([np.percentile(C[0,:], 99), np.percentile(C[1,:],99)])
tmp = np.divide(maxC,maxCRef)
C2 = np.divide(C,tmp[:, np.newaxis])
# recreate the image using reference mixing matrix
Inorm = np.multiply(Io, np.exp(-HERef.dot(C2)))
Inorm[Inorm>255] = 254
Inorm = np.reshape(Inorm.T, (h, w, 3)).astype(np.uint8)
# unmix hematoxylin and eosin
H = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,0], axis=1).dot(np.expand_dims(C2[0,:], axis=0))))
H[H>255] = 254
H = np.reshape(H.T, (h, w, 3)).astype(np.uint8)
E = np.multiply(Io, np.exp(np.expand_dims(-HERef[:,1], axis=1).dot(np.expand_dims(C2[1,:], axis=0))))
E[E>255] = 254
E = np.reshape(E.T, (h, w, 3)).astype(np.uint8)
# if saveFile is not None:
# Image.fromarray(Inorm).save(saveFile+'.png')
# Image.fromarray(H).save(saveFile+'_H.png')
# Image.fromarray(E).save(saveFile+'_E.png')
return Inorm, H, E
def initial_transform(fixed_image, moving_image):
initial_transform = sitk.CenteredTransformInitializer(fixed_image, moving_image, sitk.AffineTransform(2), sitk.CenteredTransformInitializerFilter.GEOMETRY)
# moving_resampled = sitk.Resample(moving_image, fixed_image, initial_transform, sitk.sitkLinear, 0.0, moving_image.GetPixelID())
registration_method = sitk.ImageRegistrationMethod()
registration_method.SetMetricAsCorrelation()
registration_method.SetMetricSamplingStrategy(registration_method.RANDOM)
registration_method.SetMetricSamplingPercentage(0.01)
registration_method.SetInterpolator(sitk.sitkLinear)
registration_method.SetOptimizerAsGradientDescent(learningRate = 1.0, numberOfIterations = 100, convergenceMinimumValue = 1e-6, convergenceWindowSize = 10)
registration_method.SetOptimizerScalesFromPhysicalShift()
registration_method.SetShrinkFactorsPerLevel(shrinkFactors = [2, 1]) #[8, 4, 2, 1]
registration_method.SetSmoothingSigmasPerLevel(smoothingSigmas = [1, 0])#[3, 2, 1, 0]
registration_method.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn()
registration_method.SetInitialTransform(initial_transform, inPlace = False)
final_transform = registration_method.Execute(sitk.Cast(fixed_image, sitk.sitkFloat32), sitk.Cast(moving_image, sitk.sitkFloat32))
return final_transform
def bspline_registration(fixed, moving):
transformDomainMeshSize=[8]*moving.GetDimension()
tx = sitk.BSplineTransformInitializer(fixed,
transformDomainMeshSize )
print("Initial Parameters:");
print(tx.GetParameters())
R = sitk.ImageRegistrationMethod()
R.SetMetricAsCorrelation()
R.SetOptimizerAsLBFGSB(gradientConvergenceTolerance=1e-5,
numberOfIterations=100,
maximumNumberOfCorrections=5,
maximumNumberOfFunctionEvaluations=1000,
costFunctionConvergenceFactor=1e+7)
R.SetInitialTransform(tx, True)
R.SetInterpolator(sitk.sitkLinear)
# R.AddCommand( sitk.sitkIterationEvent, lambda: command_iteration(R) )
outTx = R.Execute(fixed, moving)
# a=outTx.TransformPoint((0,0))
print("-------")
print(outTx)
print("Optimizer stop condition: {0}".format(R.GetOptimizerStopConditionDescription()))
print(" Iteration: {0}".format(R.GetOptimizerIteration()))
print(" Metric value: {0}".format(R.GetMetricValue()))
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(fixed)
resampler.SetInterpolator(sitk.sitkLinear)
# resampler.SetDefaultPixelValue(100)
resampler.SetTransform(outTx)
out = resampler.Execute(moving)
return out,outTx
def non_rigid_registration(fixedImage, movingImage, default_tranform='bspline', grid_size=16, NumberOfResolutions=4, MaximumNumberOfIterations=500 ):
'!processed in grayscale!'
# fixedImage = sitk.ReadImage(fixed_path, sitk.sitkFloat32)
# movingImage = sitk.ReadImage(moving_path, sitk.sitkFloat32)
# _,fixedH,_ = unmixHE(fixedArray)
# fixedH = cv2.cvtColor(fixedH, cv2.COLOR_RGB2GRAY)
#cv2.imwrite('H.png',H)
#H=cv2.imread('H.png',cv2.IMREAD_GRAYSCALE)
# fixedImage =sitk.GetImageFromArray(fixedArray)
# # Separate the stains from the IHC image
# ihc_hed = rgb2hed(movingArray)
# # Create an RGB image for each of the stains
# null = np.zeros_like(ihc_hed[:, :, 0])
# ihc_h = hed2rgb(np.stack((ihc_hed[:, :, 0], null, null), axis=-1)) # hematoxylin
# movingH = (ihc_h[:,:,0]*255.0).astype(np.uint8)
# # cv2.imwrite('./ihc_h.png',movingImage)
# # movingImage = cv2.imread('./ihc_h.png',cv2.IMREAD_GRAYSCALE)
# movingImage =sitk.GetImageFromArray(movingArray)
elastixImageFilter = sitk.ElastixImageFilter()
elastixImageFilter.SetFixedImage(fixedImage)
elastixImageFilter.SetMovingImage(movingImage)
# sitk.WriteImage(sitk.Cast(fixedImage,sitk.sitkUInt8), './fixedImage.png')
# sitk.WriteImage(sitk.Cast(movingImage, sitk.sitkUInt8), './movingImage.png')
parameterMapVector = sitk.VectorOfParameterMap()
# parameterMapVector.append(sitk.GetDefaultParameterMap("affine"))
parameterMapVector.append(sitk.GetDefaultParameterMap("bspline"))
# parameterMapVector.append(sitk.GetDefaultParameterMap('nonrigid'))
elastixImageFilter.SetParameterMap(parameterMapVector)
# elastixImageFilter.SetParameter("FixedImageDimension","2")
# elastixImageFilter.SetParameter("MovingImageDimension","2")
# elastixImageFilter.SetParameter("AutomaticParameterEstimation", "true")
# parameterMap0 = sitk.ReadParameterFile(prefix+'TransformParameters.0.txt')
# parameterMap1 = sitk.ReadParameterFile("/path/to/TransformParameters.1.txt`)
# elastixImageFilter.SetParameterMap(parameterMap0)
# elastixImageFilter.Execute()
# rim = elastixImageFilter.GetResultImage()
# reg_img = sitk.Cast(sitk.RescaleIntensity(rim), sitk.sitkUInt8)
# sitk.WriteImage(reg_img, reg_path)
# parameterMapVector = sitk.VectorOfParameterMap()
# parameterMapVector.append(sitk.GetDefaultParameterMap("affine"))
# #parameterMapVector.append(sitk.GetDefaultParameterMap("bspline"))
# parameterMapVector.append(sitk.GetDefaultParameterMap('nonrigid'))
# elastixImageFilter.SetParameterMap(parameterMapVector)
# params = sitk.GetDefaultParameterMap("bspline")
# params['GridSize'] ="4 134 77"
# params['GraidSpacing'] = "16 16 16"
# params['GridOrigin'] = "-22.5 -17.0 -16.5"
# elastixImageFilter.SetParameterMap(sitk.GetDefaultParameterMap(default_tranform))
# elastixImageFilter.AddParameterMap(sitk.GetDefaultParameterMap("nonrigid"))
# elastixImageFilter.SetParameter("MaximumNumberOfIterations", str(MaximumNumberOfIterations))
# elastixImageFilter.SetParameter("NumberOfResolutions",str(NumberOfResolutions))
# elastixImageFilter.SetParameter("FixedImagePyramid", "FixedSmoothingImagePyramid")
# elastixImageFilter.SetParameter("FixedImagePyramid", "FixedShrinkingImagePyramid")
# elastixImageFilter.SetParameter("MovingImagePyramid", "MovingShrinkingImagePyramid")
# pyrsch=''
# for i in reversed(range(NumberOfResolutions)):
# pyrsch+=str(pow(2,i))+' '+str(pow(2,i))+' '
# pyrsch=pyrsch[:-1]
# elastixImageFilter.SetParameter("ImagePyramidSchedule",'16 16 16 8 8 8 4 4 4 2 2 2 1 1 1')#"8 8 4 4 2 2 1 1"
# elastixImageFilter.SetParameter("FixedImagePyramidSchedule",'16 16 8 8 4 4 2 2 1 1')#"8 8 4 4 2 2 1 1"
# elastixImageFilter.SetParameter("FinalGridSpacingInPhysicalUnits", str(grid_size))
# elastixImageFilter.SetParameter("GridSize", "4 143 77")
# elastixImageFilter.SetParameter("GridOrigin", "-22.5 -17.0 -16.5")
# pyramidsamples = []
# for i in range(5):
# pyramidsamples.extend( [0]+[2**i]*2096 )
# pyramidsamples.reverse()
# elastixImageFilter.SetParameter("ImagePyramidSchedule", str(*pyramidsamples))
# elastixImageFilter.SetParameter("HowToCombineTransforms", "Compose")
# params = elastixImageFilter.GetParameterMap()
sitk.PrintParameterMap(elastixImageFilter.GetParameterMap())
elastixImageFilter.LogToConsoleOn()
elastixImageFilter.Execute()
# reg_img = sitk.Cast(sitk.RescaleIntensity(elastixImageFilter.GetResultImage()), sitk.sitkUInt8)
transformParameterMap = elastixImageFilter.GetTransformParameterMap()
# sitk.PrintParameterMap(transformParameterMap)
# deformation_file = prefix+'deformation.nii.gz'
# sitk.WriteImage(transformixImageFilter.GetDeformationField(),deformation_file)
# deformationField = transformixImageFilter.GetDeformationField()
# movingArray=cv2.imread(moving_path,cv2.IMREAD_COLOR)
outGrayArray = sitk.GetArrayFromImage(elastixImageFilter.GetResultImage())
return outGrayArray, transformParameterMap# return deformationField
def deform_array(init_tx, transformParameterMap, movingArray:np.array, refImage:sitk.Image):
if len(movingArray.shape) ==2:
movingArray=np.expand_dims(movingArray,axis=2)
initArray, outArray=[],[]
for c in range(movingArray.shape[2]):
movingChannelImage = sitk.GetImageFromArray(movingArray[:,:,c])
movingResampled = sitk.Resample(movingChannelImage, refImage, init_tx, sitk.sitkLinear, movingChannelImage[0,0], movingChannelImage.GetPixelID()) #default pixel=moving_image[0,0]
initArray.append(sitk.GetArrayFromImage(movingResampled))
transformixImageFilter = sitk.TransformixImageFilter()
transformixImageFilter.SetTransformParameterMap(transformParameterMap)
transformixImageFilter.SetMovingImage(movingResampled)
transformixImageFilter.ComputeDeformationFieldOn()
transformixImageFilter.Execute()
out = transformixImageFilter.GetResultImage()
outArray.append(sitk.GetArrayFromImage(out))
transformedArray = np.dstack(initArray)#intial rigid transformed image, before deformation
deformedArray = np.dstack(outArray)#final deformed image, after rigid, norigid transformation
return np.squeeze(transformedArray),np.squeeze(deformedArray), transformixImageFilter.GetDeformationField()
def deform_array1(init_tx, outTx, movingArray:np.array, refImage:sitk.Image):
if len(movingArray.shape) ==2:
movingArray=np.expand_dims(movingArray,axis=2)
initArray, outArray=[],[]
for c in range(movingArray.shape[2]):
movingChannelImage = sitk.GetImageFromArray(movingArray[:,:,c])
movingResampled = sitk.Resample(movingChannelImage, refImage, init_tx, sitk.sitkLinear, movingChannelImage[0,0], movingChannelImage.GetPixelID()) #default pixel=moving_image[0,0]
initArray.append(sitk.GetArrayFromImage(movingResampled))
resampler = sitk.ResampleImageFilter()
resampler.SetReferenceImage(refImage)
resampler.SetInterpolator(sitk.sitkLinear)
# resampler.SetDefaultPixelValue(100)
resampler.SetTransform(outTx)
out = resampler.Execute(movingResampled)
outArray.append(sitk.GetArrayFromImage(out))
transformedArray = np.dstack(initArray)#intial rigid transformed image, before deformation
deformedArray = np.dstack(outArray)#final deformed image, after rigid, norigid transformation
return np.squeeze(transformedArray),np.squeeze(deformedArray)
def write_deform_field1(init_trans, dis_tx, prefix, fixedImage):
grid_image = sitk.GridSource(outputPixelType=sitk.sitkUInt16,
size=fixedImage.GetSize(),
sigma=(0.1,0.1), gridSpacing=(32.0,32.0))
# grid_image.CopyInformation(deformationField)\
gridArr = np.zeros((grid_image.GetSize()[1], grid_image.GetSize()[0]))
deformArray = sitk.GetArrayFromImage(fixedImage)
# grid_image = sitk.ReadImage('Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/Van_Abel_HE_thumbnails/1664369/1664369_MR16-1693 I4_LN_HE.png')
SRCtoTRG = np.zeros_like(sitk.GetArrayFromImage(fixedImage))
df=pd.DataFrame(index=range(deformArray.shape[0]*deformArray.shape[1]), columns=['source_x','source_y', 'target_x','target_y'])
print(prefix)
index=0
for y in tqdm(range(deformArray.shape[0])):
for x in range(deformArray.shape[1]):
tx, ty = init_trans.TransformPoint((x,y))
tx, ty = int(np.floor(tx)), int(np.floor(ty))
if tx<0 or tx >= deformArray.shape[1] or ty<0 or ty >= deformArray.shape[0]: continue
nx,ny = dis_tx.TransformPoint((tx,ty)) #(x - deformArray[(y,x)][0], y -deformArray[(y,x)][1]) #dis_tx.TransformPoint((x,y))
if nx>=0 and nx < SRCtoTRG.shape[1] and ny>=0 and ny < SRCtoTRG.shape[0]:
new_x, new_y = int(np.floor(nx)), int(np.floor(ny))
SRCtoTRG[(new_y, new_x)] = fixedImage[(x,y)]
gridArr[(new_y, new_x)] = grid_image[(x,y)]
df.loc[index, ['source_x','source_y', 'target_x','target_y']] = [x,y, new_x,new_y] #fixed -> moved
index +=1
df.to_csv(prefix+'/deformField.csv', index=False)
cv2.imwrite(prefix+'/displaceFixedImage.jpg', SRCtoTRG)
cv2.imwrite(prefix+'/deformGrid.jpg', gridArr.astype(np.uint8))
# resampler = sitk.ResampleImageFilter()
# resampler.SetReferenceImage(deformationField) # Or any target geometry
# resampler.SetTransform(sitk.DisplacementFieldTransform(
# sitk.Cast(deformationField, sitk.sitkVectorFloat64)))
# warped = resampler.Execute(movingR)
# cv2.imwrite(prefix+'warped.jpg', sitk.GetArrayFromImage(warped))
def write_deform_field(init_trans, deformationField, prefix, fixedImage):
# afine_tx =sitk.AffineTransform(sitk.Cast(deformationField, sitk.sitkVectorFloat64))
dis_tx=sitk.DisplacementFieldTransform(sitk.Cast(deformationField, sitk.sitkVectorFloat64))
grid_image = sitk.GridSource(outputPixelType=sitk.sitkUInt16,
size=deformationField.GetSize(),
sigma=(0.1,0.1), gridSpacing=(32.0,32.0))
# grid_image.CopyInformation(deformationField)\
gridArr = np.zeros((grid_image.GetSize()[1], grid_image.GetSize()[0]))
deformArray = sitk.GetArrayFromImage(deformationField)
# grid_image = sitk.ReadImage('Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/Van_Abel_HE_thumbnails/1664369/1664369_MR16-1693 I4_LN_HE.png')
SRCtoTRG = np.zeros_like(sitk.GetArrayFromImage(fixedImage))
df=pd.DataFrame(index=range(deformArray.shape[0]*deformArray.shape[1]), columns=['source_x','source_y', 'target_x','target_y'])
print(prefix)
index=0
for y in tqdm(range(deformArray.shape[0])):
for x in range(deformArray.shape[1]):
tx, ty = init_trans.TransformPoint((x,y))
tx, ty = int(np.floor(tx)), int(np.floor(ty))
if tx<0 or tx >= deformArray.shape[1] or ty<0 or ty >= deformArray.shape[0]: continue
nx,ny = dis_tx.TransformPoint((tx,ty)) #(x - deformArray[(y,x)][0], y -deformArray[(y,x)][1]) #dis_tx.TransformPoint((x,y))
if nx>=0 and nx < SRCtoTRG.shape[1] and ny>=0 and ny < SRCtoTRG.shape[0]:
new_x, new_y = int(np.floor(nx)), int(np.floor(ny))
SRCtoTRG[(new_y, new_x)] = fixedImage[(x,y)]
gridArr[(new_y, new_x)] = grid_image[(x,y)]
df.loc[index, ['source_x','source_y', 'target_x','target_y']] = [x,y, new_x,new_y]
index +=1
df.to_csv(prefix+'/deformField.csv', index=False)
cv2.imwrite(prefix+'/displaceFixedImage.jpg', SRCtoTRG)
cv2.imwrite(prefix+'/deformGrid.jpg', gridArr.astype(np.uint8))
# resampler = sitk.ResampleImageFilter()
# resampler.SetReferenceImage(deformationField) # Or any target geometry
# resampler.SetTransform(sitk.DisplacementFieldTransform(
# sitk.Cast(deformationField, sitk.sitkVectorFloat64)))
# warped = resampler.Execute(movingR)
# cv2.imwrite(prefix+'warped.jpg', sitk.GetArrayFromImage(warped))
def inverse_deformationfield(deformationField):
for y in range(deformationField.GetSize()[1]):
for x in range(deformationField.GetSize()[0]):
deformationField[x,y]=(-deformationField[x,y][0], -deformationField[x,y][1])
return deformationField
def deform_by_deformatinfield(deformationField:sitk.Image, sourceArray:np.array, refImage:sitk.Image=None):
resampler = sitk.ResampleImageFilter()
# deformationField = sitk.GetImageFromArray(deformationArray)
if refImage == None: refImage=deformationField
resampler.SetReferenceImage(refImage) # Or any target geometry
resampler.SetTransform(sitk.DisplacementFieldTransform(
sitk.Cast(deformationField, sitk.sitkVectorFloat64)))
resampler.SetInterpolator(sitk.sitkNearestNeighbor)
if len(sourceArray.shape)==2: #if grayimage
sourceArray = np.expand_dims(sourceArray,axis=2)
outChannel=[]
for C in range(sourceArray.shape[2]):
deformed = sitk.GetArrayFromImage(resampler.Execute(sitk.GetImageFromArray(sourceArray[:,:,C])))
outChannel.append(deformed)
outArray = np.dstack(outChannel).squeeze()
# cv2.imwrite('warped1664369.jpg', RGB)
return outArray
def load_IHC_HE(fixed_path, moving_path):
# Example IHC image
# ihc_rgb = data.immunohistochemistry()
fixedArray = cv2.imread(fixed_path, cv2.IMREAD_COLOR)
# movingImage = sitk.ReadImage(moving_path, sitk.sitkFloat32)
movingArray = cv2.imread(moving_path, cv2.IMREAD_COLOR) #IHC
if 'HE' in moving_path:
IHC = fixedArray
HE = movingArray
else:
IHC = movingArray
HE = fixedArray
# Separate the stains from the IHC image
ihc_hed = rgb2hed(IHC)
# Create an RGB image for each of the stains
null = np.zeros_like(ihc_hed[:, :, 0])
ihc_h = hed2rgb(np.stack((ihc_hed[:, :, 0], null, null), axis=-1)) # hematoxylin
fixedIHC = (ihc_h[:,:,0]*255.0).astype(np.uint8)
_,movingH,_ = unmixHE(HE)
movingHE = cv2.cvtColor(movingH, cv2.COLOR_RGB2GRAY)
return fixedIHC, movingHE
if __name__ == '__main__':
import os
choose = -1
while (choose !='0' and choose !='1'):
choose=input("1 for Dir or 0 for image path:") or 0
if choose =='0':
fixed_path = input("Enter a ref. image path:") or '4216530_4216530_MR14-3865 G7_Tumor_HE.png'
moving_path = input("Enter a moving image path:") or '4216530_MR14-3865 G7_Tumor_CD3.png'
outpath = input("Enter an output path:") or './reg1.png'
# fixedIHC, movingHE = load_IHC_HE(fixed_path, moving_path)
fixedArray = cv2.imread(fixed_path, cv2.IMREAD_GRAYSCALE)
movingArray = cv2.imread(moving_path, cv2.IMREAD_GRAYSCALE)
fixedImage = sitk.ReadImage(fixed_path, sitk.sitkFloat32)
movingImage = sitk.ReadImage(moving_path, sitk.sitkFloat32)
tx = initial_transform(fixedImage, movingImage) #RGB 채널로 3번 해야함 추가하기
movingResampled = sitk.Resample(movingImage, fixedImage, tx, sitk.sitkLinear, movingImage[0,0], movingImage.GetPixelID()) #default pixel=moving_image[0,0]
# outGrayArray, transformParameterMap= non_rigid_registration(fixedImage,movingResampled, out_path)#movingImage to fixedImage
# cv2.imwrite('./elastixOut.png',outGrayArray)
out,outTx = bspline_registration(fixedImage, movingResampled)
movingRGB = cv2.imread(moving_path, cv2.IMREAD_COLOR)
initTransformed, deformed= deform_array1(tx, outTx,movingRGB, fixedImage)
# deformed_movingRGB, deformation_field= deform_array(tx, transformParameterMap,movingRGB, fixedImage)
# deformation_field = deformationFilter.GetDeformationField()
cv2.imwrite(outpath,deformed)
outdir = os.path.dirname(outpath)
outpath = os.path.join(outdir, 'initTransformed.png')
cv2.imwrite(outpath,initTransformed)
targetRGB = cv2.imread(fixed_path,cv2.IMREAD_COLOR)
blend = cv2.addWeighted(targetRGB.astype(np.float32), 0.6, deformed.astype(np.float32),0.4,0.0)
outpath = os.path.join(outdir, 'blend.png')
cv2.imwrite(outpath, blend)
sitk.WriteTransform(tx, os.path.join(outdir, 'initTrans.tfm') ) #wirte inital affine transform
# write_deform_field(tx, deformation_field, '/'.join(out_path.split('/')[:-1]), fixedImage) #forwardfield
write_deform_field1(tx, outTx, outdir, fixedImage) #forwardfield
'''inv_deformation_field = inverse_deformationfield(deformation_field)#fixedImage to movingImage #backwardfield
sourceRGB = cv2.imread(fixed_path, cv2.IMREAD_COLOR)
deformed_fixedRGB = deform_by_deformatinfield(deformation_field, sourceRGB, refImage=sitk.GetImageFromArray(movingHE))
outpath=os.path.join(os.path.dirname(fixed_path), 'deformed_'+os.path.basename(fixed_path))
cv2.imwrite(outpath,deformed_fixedRGB)'''
'''elif choose =='1':
dir_path = input("Enter a dir path including IHC and HE directories:") or 'Z:/PUBLIC/lab_members/inyeop_jang/data/organized_datasets/sample/info'
d={}
for root, dir, fnames in os.walk(dir_path):
root=root.replace(os.sep,'/')
for file in fnames:
if 'thumbnail_tilesize' in file and '.png' in file:
parent_dir = root.split('/')[-2]
d[parent_dir] = d.get(parent_dir, {'fixed_path': '', 'moving_path': '', 'out_path':''})
if 'CD3' in root:
d[parent_dir]['fixed_path']=root+'/'+file
d[parent_dir]['out_path']='/'.join(root.split('/')[:-1])+'/'+'CD3_HE_registered.png'
elif 'HE' in root:
d[parent_dir]['moving_path']=root+'/'+file
for k, p in d.items():
fixedIHC, movingHE = load_IHC_HE(fixed_path, moving_path)
outArray, deformation_field = non_rigid_registration(fixedIHC,movingHE)
write_deform_field(deformation_field, prefix='/'.join(p['out_path'].split('/')[:-1]))'''