-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathanon_enc_nullifier_base.circom
96 lines (82 loc) · 4.31 KB
/
anon_enc_nullifier_base.circom
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// Copyright © 2024 Kaleido, Inc.
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pragma circom 2.2.2;
include "../lib/check-positive.circom";
include "../lib/check-hashes.circom";
include "../lib/check-sum.circom";
include "../lib/check-nullifiers.circom";
include "../lib/check-smt-proof.circom";
include "../lib/encrypt-outputs.circom";
include "../node_modules/circomlib/circuits/babyjub.circom";
// This version of the circuit performs the following operations:
// - derive the sender's public key from the sender's private key
// - check the input and output commitments match the expected hashes
// - check the input and output values sum to the same amount
// - perform encryption of the receiver's output UTXO value and salt
// - check the nullifiers are derived from the input commitments and the sender's private key
// - check the nullifiers are included in the Merkle tree
template Zeto(nInputs, nOutputs, nSMTLevels) {
signal input nullifiers[nInputs];
signal input inputCommitments[nInputs];
signal input inputValues[nInputs];
signal input inputSalts[nInputs];
// must be properly hashed and trimmed to be compatible with the BabyJub curve.
// Reference: https://github.com/iden3/circomlib/blob/master/test/babyjub.js#L103
signal input inputOwnerPrivateKey;
// an ephemeral private key that is used to generated the shared ECDH key for encryption
signal input ecdhPrivateKey;
signal input root;
signal input merkleProof[nInputs][nSMTLevels];
signal input enabled[nInputs];
signal input outputCommitments[nOutputs];
signal input outputValues[nOutputs];
signal input outputOwnerPublicKeys[nOutputs][2];
signal input outputSalts[nOutputs];
signal input encryptionNonce;
// the output for the public key of the ephemeral private key used in generating ECDH shared key
signal output ecdhPublicKey[2];
// the output for the list of encrypted output UTXOs cipher texts
signal output cipherTexts[nOutputs][4];
// derive the sender's public key from the secret input
// for the sender's private key. This step demonstrates
// the sender really owns the private key for the input
// UTXOs
var inputOwnerPubKeyAx, inputOwnerPubKeyAy;
(inputOwnerPubKeyAx, inputOwnerPubKeyAy) = BabyPbk()(in <== inputOwnerPrivateKey);
CheckPositive(nOutputs)(outputValues <== outputValues);
CommitmentInputs() inAuxInputs[nInputs];
for (var i = 0; i < nInputs; i++) {
inAuxInputs[i].value <== inputValues[i];
inAuxInputs[i].salt <== inputSalts[i];
inAuxInputs[i].ownerPublicKey <== [inputOwnerPubKeyAx, inputOwnerPubKeyAy];
}
CommitmentInputs() outAuxInputs[nOutputs];
for (var i = 0; i < nOutputs; i++) {
outAuxInputs[i].value <== outputValues[i];
outAuxInputs[i].salt <== outputSalts[i];
outAuxInputs[i].ownerPublicKey <== outputOwnerPublicKeys[i];
}
CheckHashes(nInputs)(commitmentHashes <== inputCommitments, commitmentInputs <== inAuxInputs);
CheckHashes(nOutputs)(commitmentHashes <== outputCommitments, commitmentInputs <== outAuxInputs);
CheckNullifiers(nInputs)(nullifiers <== nullifiers, values <== inputValues, salts <== inputSalts, ownerPrivateKey <== inputOwnerPrivateKey);
CheckSum(nInputs, nOutputs)(inputValues <== inputValues, outputValues <== outputValues);
// With the above steps, we demonstrated that the nullifiers
// are securely bound to the input commitments. Now we need to
// demonstrate that the input commitments belong to the Sparse
// Merkle Tree with the root `root`.
CheckSMTProof(nInputs, nSMTLevels)(root <== root, merkleProof <== merkleProof, enabled <== enabled, leafNodeIndexes <== inputCommitments, leafNodeValues <== inputCommitments);
(ecdhPublicKey, cipherTexts) <== EncryptOutputs(nOutputs)(ecdhPrivateKey <== ecdhPrivateKey, encryptionNonce <== encryptionNonce, commitmentInputs <== outAuxInputs);
}