-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathindex_selection_evaluation.py
199 lines (175 loc) · 7.58 KB
/
index_selection_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import copy
import json
import logging
import pickle
import sys
import time
from .algorithms.anytime_algorithm import AnytimeAlgorithm
from .algorithms.auto_admin_algorithm import AutoAdminAlgorithm
from .algorithms.db2advis_algorithm import DB2AdvisAlgorithm
from .algorithms.dexter_algorithm import DexterAlgorithm
from .algorithms.drop_heuristic_algorithm import DropHeuristicAlgorithm
from .algorithms.extend_algorithm import ExtendAlgorithm
from .algorithms.relaxation_algorithm import RelaxationAlgorithm
from .benchmark import Benchmark
from .dbms.hana_dbms import HanaDatabaseConnector
from .dbms.postgres_dbms import PostgresDatabaseConnector
from .query_generator import QueryGenerator
from .selection_algorithm import AllIndexesAlgorithm, NoIndexAlgorithm
from .table_generator import TableGenerator
from .workload import Workload
ALGORITHMS = {
"anytime": AnytimeAlgorithm,
"auto_admin": AutoAdminAlgorithm,
"db2advis": DB2AdvisAlgorithm,
"dexter": DexterAlgorithm,
"drop": DropHeuristicAlgorithm,
"extend": ExtendAlgorithm,
"relaxation": RelaxationAlgorithm,
"no_index": NoIndexAlgorithm,
"all_indexes": AllIndexesAlgorithm,
}
DBMSYSTEMS = {"postgres": PostgresDatabaseConnector, "hana": HanaDatabaseConnector}
class IndexSelection:
def __init__(self):
logging.debug("Init IndexSelection")
self.db_connector = None
self.default_config_file = "example_configs/config_tpch.json"
self.disable_output_files = False
self.database_name = None
self.database_system = None
def run(self):
"""This is called when running `python3 -m selection`.
"""
logging.getLogger().setLevel(logging.DEBUG)
config_file = self._parse_command_line_args()
if not config_file:
config_file = self.default_config_file
logging.info("Starting Index Selection Evaluation")
logging.info("Using config file {}".format(config_file))
self._run_algorithms(config_file)
def _setup_config(self, config):
dbms_class = DBMSYSTEMS[config["database_system"]]
generating_connector = dbms_class(None, autocommit=True)
table_generator = TableGenerator(
config["benchmark_name"],
config["scale_factor"] if "scale_factor" in config else 1,
generating_connector,
)
self.database_name = table_generator.database_name()
self.database_system = config["database_system"]
self.setup_db_connector(self.database_name, self.database_system)
if "queries" not in config:
config["queries"] = None
query_generator = QueryGenerator(
config["benchmark_name"],
config["scale_factor"],
self.db_connector,
config["queries"],
table_generator.columns,
)
self.workload = Workload(query_generator.queries)
if "pickle_workload" in config and config["pickle_workload"] is True:
pickle_filename = (
f"benchmark_results/workload_{config['benchmark_name']}"
f"_{len(self.workload.queries)}_queries.pickle"
)
pickle.dump(self.workload, open(pickle_filename, "wb"))
def _run_algorithms(self, config_file):
with open(config_file) as f:
config = json.load(f)
self._setup_config(config)
self.db_connector.drop_indexes()
# Set the random seed to obtain deterministic statistics (and cost estimations)
# because ANALYZE (and alike) use sampling for large tables
self.db_connector.create_statistics()
self.db_connector.commit()
for algorithm_config in config["algorithms"]:
# CoPhy must be skipped and manually executed via AMPL because it is not
# integrated yet.
if algorithm_config["name"] == "cophy":
continue
# There are multiple configs if there is a parameter list
# configured (as a list in the .json file)
configs = self._find_parameter_list(algorithm_config)
for algorithm_config_unfolded in configs:
start_time = time.time()
cfg = algorithm_config_unfolded
indexes, what_if, cost_requests, cache_hits = self._run_algorithm(cfg)
calculation_time = round(time.time() - start_time, 2)
benchmark = Benchmark(
self.workload,
indexes,
self.db_connector,
algorithm_config_unfolded,
calculation_time,
self.disable_output_files,
config,
cost_requests,
cache_hits,
what_if,
)
benchmark.benchmark()
# Parameter list example: {"max_indexes": [5, 10, 20]}
# Creates config for each value
def _find_parameter_list(self, algorithm_config):
parameters = algorithm_config["parameters"]
configs = []
if parameters:
# if more than one list --> raise
self.__check_parameters(parameters)
for key, value in parameters.items():
if isinstance(value, list):
for i in value:
new_config = copy.deepcopy(algorithm_config)
new_config["parameters"][key] = i
configs.append(new_config)
if len(configs) == 0:
configs.append(algorithm_config)
return configs
def __check_parameters(self, parameters):
counter = 0
for key, value in parameters.items():
if isinstance(value, list):
counter += 1
if counter > 1:
raise Exception("Too many parameter lists in config")
def _run_algorithm(self, config):
self.db_connector.drop_indexes()
self.db_connector.commit()
self.setup_db_connector(self.database_name, self.database_system)
algorithm = self.create_algorithm_object(config["name"], config["parameters"])
logging.info(f"Running algorithm {config}")
indexes = algorithm.calculate_best_indexes(self.workload)
logging.info(f"Indexes found: {indexes}")
what_if = algorithm.cost_evaluation.what_if
cost_requests = (
self.db_connector.cost_estimations
if config["name"] == "db2advis"
else algorithm.cost_evaluation.cost_requests
)
cache_hits = (
0 if config["name"] == "db2advis" else algorithm.cost_evaluation.cache_hits
)
return indexes, what_if, cost_requests, cache_hits
def create_algorithm_object(self, algorithm_name, parameters):
algorithm = ALGORITHMS[algorithm_name](self.db_connector, parameters)
return algorithm
def _parse_command_line_args(self):
arguments = sys.argv
if "CRITICAL_LOG" in arguments:
logging.getLogger().setLevel(logging.CRITICAL)
if "ERROR_LOG" in arguments:
logging.getLogger().setLevel(logging.ERROR)
if "INFO_LOG" in arguments:
logging.getLogger().setLevel(logging.INFO)
if "DISABLE_OUTPUT_FILES" in arguments:
self.disable_output_files = True
for argument in arguments:
if ".json" in argument:
return argument
def setup_db_connector(self, database_name, database_system):
if self.db_connector:
logging.info("Create new database connector (closing old)")
self.db_connector.close()
self.db_connector = DBMSYSTEMS[database_system](database_name)