|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "attachments": {}, |
| 5 | + "cell_type": "markdown", |
| 6 | + "id": "262a5ec8-2553-4237-ab62-319b6ca22089", |
| 7 | + "metadata": {}, |
| 8 | + "source": [ |
| 9 | + "# Example-58: Frequency (parametric derivatives for linear system)" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "code", |
| 14 | + "execution_count": 1, |
| 15 | + "id": "21defbfe-5f6e-4e91-94dd-a8267d6144d1", |
| 16 | + "metadata": {}, |
| 17 | + "outputs": [], |
| 18 | + "source": [ |
| 19 | + "# In this example frequencies for linear model are computed from trajectory data\n", |
| 20 | + "# Frequency values are compared with ones obtained from one-turn matrix\n", |
| 21 | + "# Derivatives with respect to parameters are also computed and compared" |
| 22 | + ] |
| 23 | + }, |
| 24 | + { |
| 25 | + "cell_type": "code", |
| 26 | + "execution_count": 2, |
| 27 | + "id": "6302e8bb-59b6-47fc-a81d-717dadda6e06", |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [], |
| 30 | + "source": [ |
| 31 | + "# Import\n", |
| 32 | + "\n", |
| 33 | + "import torch\n", |
| 34 | + "from torch import Tensor\n", |
| 35 | + "\n", |
| 36 | + "from pathlib import Path\n", |
| 37 | + "\n", |
| 38 | + "from model.library.line import Line\n", |
| 39 | + "\n", |
| 40 | + "from model.command.external import load_sdds\n", |
| 41 | + "from model.command.external import load_lattice\n", |
| 42 | + "from model.command.build import build\n", |
| 43 | + "from model.command.tune import tune\n", |
| 44 | + "from model.command.tune import chromaticity\n", |
| 45 | + "from model.command.trajectory import trajectory\n", |
| 46 | + "from model.command.frequency import filter\n", |
| 47 | + "from model.command.frequency import frequency_factory" |
| 48 | + ] |
| 49 | + }, |
| 50 | + { |
| 51 | + "cell_type": "code", |
| 52 | + "execution_count": 3, |
| 53 | + "id": "93add4df-b6ac-475f-b641-d00cf202ea3a", |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "# Load ELEGANT twiss\n", |
| 58 | + "\n", |
| 59 | + "path = Path('ic.twiss')\n", |
| 60 | + "parameters, columns = load_sdds(path)\n", |
| 61 | + "\n", |
| 62 | + "NUX:Tensor = torch.tensor(parameters['nux'] % 1, dtype=torch.float64)\n", |
| 63 | + "NUY:Tensor = torch.tensor(parameters['nuy'] % 1, dtype=torch.float64)" |
| 64 | + ] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": 4, |
| 69 | + "id": "4aa78283-6227-47bd-a8d0-816e2bf3bc03", |
| 70 | + "metadata": {}, |
| 71 | + "outputs": [], |
| 72 | + "source": [ |
| 73 | + "# Build and setup lattice\n", |
| 74 | + "\n", |
| 75 | + "# Load ELEGANT table\n", |
| 76 | + "\n", |
| 77 | + "path = Path('ic.lte')\n", |
| 78 | + "data = load_lattice(path)\n", |
| 79 | + "\n", |
| 80 | + "# Build ELEGANT table\n", |
| 81 | + "\n", |
| 82 | + "ring:Line = build('RING', 'ELEGANT', data)\n", |
| 83 | + "ring.flatten()\n", |
| 84 | + "\n", |
| 85 | + "# Merge drifts\n", |
| 86 | + "\n", |
| 87 | + "ring.merge()\n", |
| 88 | + "\n", |
| 89 | + "# Turn off sextupoles and set linear dipoles\n", |
| 90 | + "\n", |
| 91 | + "for element in ring: \n", |
| 92 | + " if element.__class__.__name__ == 'Sextupole':\n", |
| 93 | + " element.ms = 0.0\n", |
| 94 | + " if element.__class__.__name__ == 'Dipole':\n", |
| 95 | + " element.linear = True \n", |
| 96 | + "\n", |
| 97 | + "# Split BPMs\n", |
| 98 | + "\n", |
| 99 | + "ring.split((None, ['BPM'], None, None))\n", |
| 100 | + "\n", |
| 101 | + "# Roll lattice start\n", |
| 102 | + "\n", |
| 103 | + "ring.roll(1)\n", |
| 104 | + "\n", |
| 105 | + "# Split lattice into lines by BPMs\n", |
| 106 | + "\n", |
| 107 | + "ring.splice()\n", |
| 108 | + "\n", |
| 109 | + "# Set number of elements of different kinds\n", |
| 110 | + "\n", |
| 111 | + "nb = ring.describe['BPM']\n", |
| 112 | + "nq = ring.describe['Quadrupole']\n", |
| 113 | + "ns = ring.describe['Sextupole']" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "code", |
| 118 | + "execution_count": 5, |
| 119 | + "id": "59f8426b-30da-4540-b98c-d43720b3e0e8", |
| 120 | + "metadata": {}, |
| 121 | + "outputs": [ |
| 122 | + { |
| 123 | + "name": "stdout", |
| 124 | + "output_type": "stream", |
| 125 | + "text": [ |
| 126 | + "tensor(3.1086e-15, dtype=torch.float64)\n", |
| 127 | + "tensor(5.5511e-16, dtype=torch.float64)\n" |
| 128 | + ] |
| 129 | + } |
| 130 | + ], |
| 131 | + "source": [ |
| 132 | + "# Compute tunes (one-turn matrix)\n", |
| 133 | + "\n", |
| 134 | + "nux, nuy = tune(ring, [], alignment=False, matched=True, limit=8, epsilon=1.0E-12)\n", |
| 135 | + "\n", |
| 136 | + "# Compare with elegant\n", |
| 137 | + "\n", |
| 138 | + "print((NUX - nux).abs())\n", |
| 139 | + "print((NUY - nuy).abs())" |
| 140 | + ] |
| 141 | + }, |
| 142 | + { |
| 143 | + "cell_type": "code", |
| 144 | + "execution_count": 6, |
| 145 | + "id": "bef63178-4ba8-47e2-81dd-5cc6b1f5e926", |
| 146 | + "metadata": {}, |
| 147 | + "outputs": [ |
| 148 | + { |
| 149 | + "name": "stdout", |
| 150 | + "output_type": "stream", |
| 151 | + "text": [ |
| 152 | + "tensor(3.3061e-12, dtype=torch.float64)\n", |
| 153 | + "tensor(3.1350e-10, dtype=torch.float64)\n" |
| 154 | + ] |
| 155 | + } |
| 156 | + ], |
| 157 | + "source": [ |
| 158 | + "# Compute tunes (trajectory)\n", |
| 159 | + "\n", |
| 160 | + "# Set trajectory generator\n", |
| 161 | + "\n", |
| 162 | + "generator = trajectory(ring, [0], matched=True)\n", |
| 163 | + "\n", |
| 164 | + "# Set initial condition\n", |
| 165 | + "\n", |
| 166 | + "state = torch.tensor([+1.0E-9, 0.0, -1.0E-9, 0.0], dtype=torch.float64)\n", |
| 167 | + "\n", |
| 168 | + "# Set window data\n", |
| 169 | + "\n", |
| 170 | + "window = filter(2**10, 1.0, dtype=ring.dtype, device=ring.device)\n", |
| 171 | + "\n", |
| 172 | + "# Set frequency generator\n", |
| 173 | + "\n", |
| 174 | + "frequency = frequency_factory(generator)\n", |
| 175 | + "\n", |
| 176 | + "# Compute frequencies\n", |
| 177 | + "\n", |
| 178 | + "nux, nuy = frequency(window, state)\n", |
| 179 | + "\n", |
| 180 | + "# Compare with elegant\n", |
| 181 | + "\n", |
| 182 | + "print((NUX - nux).abs())\n", |
| 183 | + "print((NUY - nuy).abs())" |
| 184 | + ] |
| 185 | + }, |
| 186 | + { |
| 187 | + "cell_type": "code", |
| 188 | + "execution_count": 7, |
| 189 | + "id": "43d44857-d79a-469d-8f38-b167ad480efa", |
| 190 | + "metadata": {}, |
| 191 | + "outputs": [ |
| 192 | + { |
| 193 | + "name": "stdout", |
| 194 | + "output_type": "stream", |
| 195 | + "text": [ |
| 196 | + "tensor([[-7.8819],\n", |
| 197 | + " [-3.9483]], dtype=torch.float64)\n" |
| 198 | + ] |
| 199 | + } |
| 200 | + ], |
| 201 | + "source": [ |
| 202 | + "# Derivative with respect to momentum deviation (one-turn matrix)\n", |
| 203 | + "\n", |
| 204 | + "dp = torch.tensor([0.0], dtype=torch.float64)\n", |
| 205 | + "\n", |
| 206 | + "print(torch.func.jacrev(lambda dp: tune(ring, [dp], ('dp', None, None, None), matched=True, limit=1, epsilon=None))(dp))" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "code", |
| 211 | + "execution_count": 8, |
| 212 | + "id": "827913f7-2278-40c2-b88d-d41758c3192d", |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [ |
| 215 | + { |
| 216 | + "name": "stdout", |
| 217 | + "output_type": "stream", |
| 218 | + "text": [ |
| 219 | + "tensor([[-7.8819],\n", |
| 220 | + " [-3.9486]], dtype=torch.float64)\n" |
| 221 | + ] |
| 222 | + } |
| 223 | + ], |
| 224 | + "source": [ |
| 225 | + "# Derivative with respect to momentum deviation (trajectory)\n", |
| 226 | + "\n", |
| 227 | + "# Set parametric trajectory generator\n", |
| 228 | + "\n", |
| 229 | + "generator = trajectory(ring, [0], ('dp', None, None, None), matched=True)\n", |
| 230 | + "\n", |
| 231 | + "# Set initial state and momentum deviation\n", |
| 232 | + "# Note, state should not be equal to zero, since zero is a fixed point,\n", |
| 233 | + "\n", |
| 234 | + "state = torch.tensor([+1.0E-9, 0.0, -1.0E-9, 0.0], dtype=torch.float64)\n", |
| 235 | + "dp = torch.tensor([0.0], dtype=torch.float64)\n", |
| 236 | + "\n", |
| 237 | + "# Set window data\n", |
| 238 | + "\n", |
| 239 | + "window = filter(2**10, 1.0, dtype=ring.dtype, device=ring.device)\n", |
| 240 | + "\n", |
| 241 | + "# Set frequency generator\n", |
| 242 | + "\n", |
| 243 | + "frequency = frequency_factory(generator)\n", |
| 244 | + "\n", |
| 245 | + "# Compute derivative\n", |
| 246 | + "\n", |
| 247 | + "print(torch.func.jacrev(lambda dp: frequency(window, state, dp), chunk_size=256)(dp))" |
| 248 | + ] |
| 249 | + } |
| 250 | + ], |
| 251 | + "metadata": { |
| 252 | + "colab": { |
| 253 | + "collapsed_sections": [ |
| 254 | + "myt0_gMIOq7b", |
| 255 | + "5d97819c" |
| 256 | + ], |
| 257 | + "name": "03_frequency.ipynb", |
| 258 | + "provenance": [] |
| 259 | + }, |
| 260 | + "kernelspec": { |
| 261 | + "display_name": "Python 3 (ipykernel)", |
| 262 | + "language": "python", |
| 263 | + "name": "python3" |
| 264 | + }, |
| 265 | + "language_info": { |
| 266 | + "codemirror_mode": { |
| 267 | + "name": "ipython", |
| 268 | + "version": 3 |
| 269 | + }, |
| 270 | + "file_extension": ".py", |
| 271 | + "mimetype": "text/x-python", |
| 272 | + "name": "python", |
| 273 | + "nbconvert_exporter": "python", |
| 274 | + "pygments_lexer": "ipython3", |
| 275 | + "version": "3.12.1" |
| 276 | + }, |
| 277 | + "latex_envs": { |
| 278 | + "LaTeX_envs_menu_present": true, |
| 279 | + "autoclose": false, |
| 280 | + "autocomplete": true, |
| 281 | + "bibliofile": "biblio.bib", |
| 282 | + "cite_by": "apalike", |
| 283 | + "current_citInitial": 1, |
| 284 | + "eqLabelWithNumbers": true, |
| 285 | + "eqNumInitial": 1, |
| 286 | + "hotkeys": { |
| 287 | + "equation": "Ctrl-E", |
| 288 | + "itemize": "Ctrl-I" |
| 289 | + }, |
| 290 | + "labels_anchors": false, |
| 291 | + "latex_user_defs": false, |
| 292 | + "report_style_numbering": false, |
| 293 | + "user_envs_cfg": false |
| 294 | + } |
| 295 | + }, |
| 296 | + "nbformat": 4, |
| 297 | + "nbformat_minor": 5 |
| 298 | +} |
0 commit comments