Skip to content

Latest commit

 

History

History
532 lines (391 loc) · 17 KB

backend.md

File metadata and controls

532 lines (391 loc) · 17 KB

⚙️ Backend

Table of Contents


Overview

Backend is an umbrella module that encapsulates a unified way to work with the following functionalities:

  • Chat Models via (ChatModel class)
  • Embedding Models (coming soon)
  • Audio Models (coming soon)
  • Image Models (coming soon)

BeeAI framework's backend is designed with a provider-based architecture, allowing you to switch between different AI service providers while maintaining a consistent API.

Note

Location within the framework: beeai_framework/backend.


Supported providers

The following table depicts supported providers. Each provider requires specific configuration through environment variables. Ensure all required variables are set before initializing a provider.

Name Chat Embedding Dependency Environment Variables
Ollama ollama-ai-provider OLLAMA_CHAT_MODEL
OLLAMA_BASE_URL
OpenAI openai OPENAI_CHAT_MODEL
OPENAI_API_BASE
OPENAI_API_KEY
OPENAI_ORGANIZATION
OPENAI_API_HEADERS
Watsonx @ibm-cloud/watsonx-ai WATSONX_CHAT_MODEL
WATSONX_API_KEY
WATSONX_PROJECT_ID
WATSONX_SPACE_ID
WATSONX_TOKEN
WATSONX_ZENAPIKEY
WATSONX_URL
WATSONX_REGION
Groq GROQ_CHAT_MODEL
GROQ_API_KEY
Amazon Bedrock boto3 AWS_CHAT_MODEL
AWS_ACCESS_KEY_ID
AWS_SECRET_ACCESS_KEY
AWS_REGION
AWS_API_HEADERS
Google Vertex GOOGLE_VERTEX_CHAT_MODEL
GOOGLE_VERTEX_PROJECT
GOOGLE_APPLICATION_CREDENTIALS
GOOGLE_APPLICATION_CREDENTIALS_JSON
GOOGLE_CREDENTIALS
GOOGLE_VERTEX_API_HEADERS
Azure OpenAI AZURE_OPENAI_CHAT_MODEL
AZURE_OPENAI_API_KEY
AZURE_OPENAI_API_BASE
AZURE_OPENAI_API_VERSION
AZURE_AD_TOKEN
AZURE_API_TYPE
AZURE_API_HEADERS
Anthropic ANTHROPIC_CHAT_MODEL
ANTHROPIC_API_KEY
ANTHROPIC_API_HEADERS
xAI XAI_CHAT_MODEL
XAI_API_KEY

Tip

If you don't see your provider raise an issue here. Meanwhile, you can use Ollama adapter.


Backend initialization

The Backend class serves as a central entry point to access models from your chosen provider.

import asyncio
import json
import sys
import traceback

from pydantic import BaseModel, Field

from beeai_framework.adapters.watsonx import WatsonxChatModel
from beeai_framework.backend import ChatModel, MessageToolResultContent, ToolMessage, UserMessage
from beeai_framework.errors import AbortError, FrameworkError
from beeai_framework.tools.weather import OpenMeteoTool
from beeai_framework.utils import AbortSignal

# Setting can be passed here during initiation or pre-configured via environment variables
llm = WatsonxChatModel(
    "ibm/granite-3-8b-instruct",
    # settings={
    #     "project_id": "WATSONX_PROJECT_ID",
    #     "api_key": "WATSONX_API_KEY",
    #     "base_url": "WATSONX_API_URL",
    # },
)


async def watsonx_from_name() -> None:
    watsonx_llm = ChatModel.from_name(
        "watsonx:ibm/granite-3-8b-instruct",
        # {
        #     "project_id": "WATSONX_PROJECT_ID",
        #     "api_key": "WATSONX_API_KEY",
        #     "base_url": "WATSONX_API_URL",
        # },
    )
    user_message = UserMessage("what states are part of New England?")
    response = await watsonx_llm.create(messages=[user_message])
    print(response.get_text_content())


async def watsonx_sync() -> None:
    user_message = UserMessage("what is the capital of Massachusetts?")
    response = await llm.create(messages=[user_message])
    print(response.get_text_content())


async def watsonx_stream() -> None:
    user_message = UserMessage("How many islands make up the country of Cape Verde?")
    response = await llm.create(messages=[user_message], stream=True)
    print(response.get_text_content())


async def watsonx_images() -> None:
    image_llm = ChatModel.from_name(
        "watsonx:meta-llama/llama-3-2-11b-vision-instruct",
    )
    response = await image_llm.create(
        messages=[
            UserMessage("What is the dominant color in the picture?"),
            UserMessage.from_image(
                ""
            ),
        ],
    )
    print(response.get_text_content())


async def watsonx_stream_abort() -> None:
    user_message = UserMessage("What is the smallest of the Cape Verde islands?")

    try:
        response = await llm.create(messages=[user_message], stream=True, abort_signal=AbortSignal.timeout(0.5))

        if response is not None:
            print(response.get_text_content())
        else:
            print("No response returned.")
    except AbortError as err:
        print(f"Aborted: {err}")


async def watson_structure() -> None:
    class TestSchema(BaseModel):
        answer: str = Field(description="your final answer")

    user_message = UserMessage("How many islands make up the country of Cape Verde?")
    response = await llm.create_structure(schema=TestSchema, messages=[user_message])
    print(response.object)


async def watson_tool_calling() -> None:
    watsonx_llm = ChatModel.from_name(
        "watsonx:ibm/granite-3-8b-instruct",
    )
    user_message = UserMessage("What is the current weather in Boston?")
    weather_tool = OpenMeteoTool()
    response = await watsonx_llm.create(messages=[user_message], tools=[weather_tool])
    tool_call_msg = response.get_tool_calls()[0]
    print(tool_call_msg.model_dump())
    tool_response = await weather_tool.run(json.loads(tool_call_msg.args))
    tool_response_msg = ToolMessage(
        MessageToolResultContent(
            result=tool_response.get_text_content(), tool_name=tool_call_msg.tool_name, tool_call_id=tool_call_msg.id
        )
    )
    print(tool_response_msg.to_plain())
    final_response = await watsonx_llm.create(messages=[user_message, tool_response_msg], tools=[])
    print(final_response.get_text_content())


async def watsonx_debug() -> None:
    # Log every request
    llm.emitter.match(
        "*",
        lambda data, event: print(
            f"Time: {event.created_at.time().isoformat()}",
            f"Event: {event.name}",
            f"Data: {str(data)[:90]}...",
        ),
    )

    response = await llm.create(
        messages=[UserMessage("Hello world!")],
    )
    print(response.messages[0].to_plain())


async def main() -> None:
    print("*" * 10, "watsonx_from_name")
    await watsonx_from_name()
    print("*" * 10, "watsonx_images")
    await watsonx_images()
    print("*" * 10, "watsonx_sync")
    await watsonx_sync()
    print("*" * 10, "watsonx_stream")
    await watsonx_stream()
    print("*" * 10, "watsonx_stream_abort")
    await watsonx_stream_abort()
    print("*" * 10, "watson_structure")
    await watson_structure()
    print("*" * 10, "watson_tool_calling")
    await watson_tool_calling()
    print("*" * 10, "watsonx_debug")
    await watsonx_debug()


if __name__ == "__main__":
    try:
        asyncio.run(main())
    except FrameworkError as e:
        traceback.print_exc()
        sys.exit(e.explain())

Source: examples/backend/providers/watsonx.py

All providers examples can be found in examples/backend/providers.

Tip

See the events documentation for more information on standard emitter events.


Chat model

The ChatModel class represents a Chat Large Language Model and provides methods for text generation, streaming responses, and more. You can initialize a chat model in multiple ways:

Method 1: Using the generic factory method

from beeai_framework.backend.chat import ChatModel

ollama_chat_model = ChatModel.from_name("ollama:llama3.1")

Method 2: Creating a specific provider model directly

from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel

ollama_chat_model = OllamaChatModel("llama3.1")

Chat model configuration

You can configure various parameters for your chat model:

import asyncio
import sys
import traceback

from beeai_framework.adapters.ollama import OllamaChatModel
from beeai_framework.backend import UserMessage
from beeai_framework.errors import FrameworkError
from examples.helpers.io import ConsoleReader


async def main() -> None:
    llm = OllamaChatModel("llama3.1")

    #  Optionally one may set llm parameters
    llm.parameters.max_tokens = 10000  # high number yields longer potential output
    llm.parameters.top_p = 0  # higher number yields more complex vocabulary, recommend only changing p or k
    llm.parameters.frequency_penalty = 0  # higher number yields reduction in word reptition
    llm.parameters.temperature = 0  # higher number yields greater randomness and variation
    llm.parameters.top_k = 0  # higher number yields more variance, recommend only changing p or k
    llm.parameters.n = 1  # higher number yields more choices
    llm.parameters.presence_penalty = 0  # higher number yields reduction in repetition of words
    llm.parameters.seed = 10  # can help produce similar responses if prompt and seed are always the same
    llm.parameters.stop_sequences = ["q", "quit", "ahhhhhhhhh"]  # stops the model on input of any of these strings
    llm.parameters.stream = False  # determines whether or not to use streaming to receive incremental data

    reader = ConsoleReader()

    for prompt in reader:
        response = await llm.create(messages=[UserMessage(prompt)])
        reader.write("LLM 🤖 (txt) : ", response.get_text_content())
        reader.write("LLM 🤖 (raw) : ", "\n".join([str(msg.to_plain()) for msg in response.messages]))


if __name__ == "__main__":
    try:
        asyncio.run(main())
    except FrameworkError as e:
        traceback.print_exc()
        sys.exit(e.explain())

Source: examples/backend/chat.py

Text generation

The most basic usage is to generate text responses:

from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel
from beeai_framework.backend.message import UserMessage

ollama_chat_model = OllamaChatModel("llama3.1")
response = await ollama_chat_model.create(
    messages=[UserMessage("what states are part of New England?")]
)

print(response.get_text_content())

Note

Execution parameters (those passed to model.create({...})) are superior to ones defined via config.

Streaming responses

For applications requiring real-time responses:

from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel
from beeai_framework.backend.message import UserMessage

llm = OllamaChatModel("llama3.1")
user_message = UserMessage("How many islands make up the country of Cape Verde?")
response = await llm.create(messages=[user_message], stream=True)

Structured generation

Generate structured data according to a schema:

import asyncio
import json
import sys
import traceback

from pydantic import BaseModel, Field

from beeai_framework.backend import ChatModel, UserMessage
from beeai_framework.errors import FrameworkError


async def main() -> None:
    model = ChatModel.from_name("ollama:llama3.1")

    class ProfileSchema(BaseModel):
        first_name: str = Field(..., min_length=1)
        last_name: str = Field(..., min_length=1)
        address: str
        age: int = Field(..., min_length=1)
        hobby: str

    class ErrorSchema(BaseModel):
        error: str

    class SchemUnion(ProfileSchema, ErrorSchema):
        pass

    response = await model.create_structure(
        schema=SchemUnion,
        messages=[UserMessage("Generate a profile of a citizen of Europe.")],
    )

    print(
        json.dumps(
            response.object.model_dump() if isinstance(response.object, BaseModel) else response.object, indent=4
        )
    )


if __name__ == "__main__":
    try:
        asyncio.run(main())
    except FrameworkError as e:
        traceback.print_exc()
        sys.exit(e.explain())

Source: /examples/backend/structured.py

Tool calling

Integrate external tools with your AI model:

import asyncio
import json
import re
import sys
import traceback

from beeai_framework.backend import (
    AnyMessage,
    ChatModel,
    ChatModelParameters,
    MessageToolResultContent,
    SystemMessage,
    ToolMessage,
    UserMessage,
)
from beeai_framework.errors import FrameworkError
from beeai_framework.tools import AnyTool, ToolOutput
from beeai_framework.tools.search.duckduckgo import DuckDuckGoSearchTool
from beeai_framework.tools.weather.openmeteo import OpenMeteoTool


async def main() -> None:
    model = ChatModel.from_name("ollama:llama3.1", ChatModelParameters(temperature=0))
    tools: list[AnyTool] = [DuckDuckGoSearchTool(), OpenMeteoTool()]
    messages: list[AnyMessage] = [
        SystemMessage("You are a helpful assistant. Use tools to provide a correct answer."),
        UserMessage("What's the fastest marathon time?"),
    ]

    while True:
        response = await model.create(
            messages=messages,
            tools=tools,
        )

        tool_calls = response.get_tool_calls()

        tool_results: list[ToolMessage] = []

        for tool_call in tool_calls:
            print(f"-> running '{tool_call.tool_name}' tool with {tool_call.args}")
            tool: AnyTool = next(tool for tool in tools if tool.name == tool_call.tool_name)
            assert tool is not None
            res: ToolOutput = await tool.run(json.loads(tool_call.args))
            result = res.get_text_content()
            print(f"<- got response from '{tool_call.tool_name}'", re.sub(r"\s+", " ", result)[:90] + " (truncated)")
            tool_results.append(
                ToolMessage(
                    MessageToolResultContent(
                        result=result,
                        tool_name=tool_call.tool_name,
                        tool_call_id=tool_call.id,
                    )
                )
            )

        messages.extend(tool_results)

        answer = response.get_text_content()

        if answer:
            print(f"Agent: {answer}")
            break


if __name__ == "__main__":
    try:
        asyncio.run(main())
    except FrameworkError as e:
        traceback.print_exc()
        sys.exit(e.explain())

Source: /examples/backend/tool_calling.py


Embedding model

The EmbedingModel class provides functionality for generating vector embeddings from text.

Embedding model initialization

You can initialize an embedding model in multiple ways:

Method 1: Using the generic factory method

Coming soon

Method 2: Creating a specific provider model directly

Coming soon

Embedding model usage

Generate embeddings for one or more text strings:

Coming soon

Advanced usage

If your preferred provider isn't directly supported, you can use the LangChain adapter as a bridge.

This allows you to leverage any provider that has LangChain compatibility.

Coming soon

Source: /examples/backend/providers/langchain.py


Troubleshooting

Common issues and their solutions:

  1. Authentication errors: Ensure all required environment variables are set correctly
  2. Model not found: Verify that the model ID is correct and available for the selected provider

Examples

  • All backend examples can be found in here.