- Overview
- Supported Providers
- Backend Initialization
- Chat Model
- Embedding Model
- Troubleshooting
- Examples
Backend is an umbrella module that encapsulates a unified way to work with the following functionalities:
- Chat Models via (
ChatModel
class) - Embedding Models (coming soon)
- Audio Models (coming soon)
- Image Models (coming soon)
BeeAI framework's backend is designed with a provider-based architecture, allowing you to switch between different AI service providers while maintaining a consistent API.
Note
Location within the framework: beeai_framework/backend.
The following table depicts supported providers. Each provider requires specific configuration through environment variables. Ensure all required variables are set before initializing a provider.
Name | Chat | Embedding | Dependency | Environment Variables |
---|---|---|---|---|
Ollama |
✅ | ollama-ai-provider |
OLLAMA_CHAT_MODEL OLLAMA_BASE_URL |
|
OpenAI |
✅ | openai |
OPENAI_CHAT_MODEL OPENAI_API_BASE OPENAI_API_KEY OPENAI_ORGANIZATION OPENAI_API_HEADERS |
|
Watsonx |
✅ | @ibm-cloud/watsonx-ai |
WATSONX_CHAT_MODEL WATSONX_API_KEY WATSONX_PROJECT_ID WATSONX_SPACE_ID WATSONX_TOKEN WATSONX_ZENAPIKEY WATSONX_URL WATSONX_REGION |
|
Groq |
✅ | GROQ_CHAT_MODEL GROQ_API_KEY |
||
Amazon Bedrock |
✅ | boto3 |
AWS_CHAT_MODEL AWS_ACCESS_KEY_ID AWS_SECRET_ACCESS_KEY AWS_REGION AWS_API_HEADERS |
|
Google Vertex |
✅ | GOOGLE_VERTEX_CHAT_MODEL GOOGLE_VERTEX_PROJECT GOOGLE_APPLICATION_CREDENTIALS GOOGLE_APPLICATION_CREDENTIALS_JSON GOOGLE_CREDENTIALS GOOGLE_VERTEX_API_HEADERS |
||
Azure OpenAI |
✅ | AZURE_OPENAI_CHAT_MODEL AZURE_OPENAI_API_KEY AZURE_OPENAI_API_BASE AZURE_OPENAI_API_VERSION AZURE_AD_TOKEN AZURE_API_TYPE AZURE_API_HEADERS |
||
Anthropic |
✅ | ANTHROPIC_CHAT_MODEL ANTHROPIC_API_KEY ANTHROPIC_API_HEADERS |
||
xAI |
✅ | XAI_CHAT_MODEL XAI_API_KEY |
Tip
If you don't see your provider raise an issue here. Meanwhile, you can use Ollama adapter.
The Backend
class serves as a central entry point to access models from your chosen provider.
import asyncio
import json
import sys
import traceback
from pydantic import BaseModel, Field
from beeai_framework.adapters.watsonx import WatsonxChatModel
from beeai_framework.backend import ChatModel, MessageToolResultContent, ToolMessage, UserMessage
from beeai_framework.errors import AbortError, FrameworkError
from beeai_framework.tools.weather import OpenMeteoTool
from beeai_framework.utils import AbortSignal
# Setting can be passed here during initiation or pre-configured via environment variables
llm = WatsonxChatModel(
"ibm/granite-3-8b-instruct",
# settings={
# "project_id": "WATSONX_PROJECT_ID",
# "api_key": "WATSONX_API_KEY",
# "base_url": "WATSONX_API_URL",
# },
)
async def watsonx_from_name() -> None:
watsonx_llm = ChatModel.from_name(
"watsonx:ibm/granite-3-8b-instruct",
# {
# "project_id": "WATSONX_PROJECT_ID",
# "api_key": "WATSONX_API_KEY",
# "base_url": "WATSONX_API_URL",
# },
)
user_message = UserMessage("what states are part of New England?")
response = await watsonx_llm.create(messages=[user_message])
print(response.get_text_content())
async def watsonx_sync() -> None:
user_message = UserMessage("what is the capital of Massachusetts?")
response = await llm.create(messages=[user_message])
print(response.get_text_content())
async def watsonx_stream() -> None:
user_message = UserMessage("How many islands make up the country of Cape Verde?")
response = await llm.create(messages=[user_message], stream=True)
print(response.get_text_content())
async def watsonx_images() -> None:
image_llm = ChatModel.from_name(
"watsonx:meta-llama/llama-3-2-11b-vision-instruct",
)
response = await image_llm.create(
messages=[
UserMessage("What is the dominant color in the picture?"),
UserMessage.from_image(
""
),
],
)
print(response.get_text_content())
async def watsonx_stream_abort() -> None:
user_message = UserMessage("What is the smallest of the Cape Verde islands?")
try:
response = await llm.create(messages=[user_message], stream=True, abort_signal=AbortSignal.timeout(0.5))
if response is not None:
print(response.get_text_content())
else:
print("No response returned.")
except AbortError as err:
print(f"Aborted: {err}")
async def watson_structure() -> None:
class TestSchema(BaseModel):
answer: str = Field(description="your final answer")
user_message = UserMessage("How many islands make up the country of Cape Verde?")
response = await llm.create_structure(schema=TestSchema, messages=[user_message])
print(response.object)
async def watson_tool_calling() -> None:
watsonx_llm = ChatModel.from_name(
"watsonx:ibm/granite-3-8b-instruct",
)
user_message = UserMessage("What is the current weather in Boston?")
weather_tool = OpenMeteoTool()
response = await watsonx_llm.create(messages=[user_message], tools=[weather_tool])
tool_call_msg = response.get_tool_calls()[0]
print(tool_call_msg.model_dump())
tool_response = await weather_tool.run(json.loads(tool_call_msg.args))
tool_response_msg = ToolMessage(
MessageToolResultContent(
result=tool_response.get_text_content(), tool_name=tool_call_msg.tool_name, tool_call_id=tool_call_msg.id
)
)
print(tool_response_msg.to_plain())
final_response = await watsonx_llm.create(messages=[user_message, tool_response_msg], tools=[])
print(final_response.get_text_content())
async def watsonx_debug() -> None:
# Log every request
llm.emitter.match(
"*",
lambda data, event: print(
f"Time: {event.created_at.time().isoformat()}",
f"Event: {event.name}",
f"Data: {str(data)[:90]}...",
),
)
response = await llm.create(
messages=[UserMessage("Hello world!")],
)
print(response.messages[0].to_plain())
async def main() -> None:
print("*" * 10, "watsonx_from_name")
await watsonx_from_name()
print("*" * 10, "watsonx_images")
await watsonx_images()
print("*" * 10, "watsonx_sync")
await watsonx_sync()
print("*" * 10, "watsonx_stream")
await watsonx_stream()
print("*" * 10, "watsonx_stream_abort")
await watsonx_stream_abort()
print("*" * 10, "watson_structure")
await watson_structure()
print("*" * 10, "watson_tool_calling")
await watson_tool_calling()
print("*" * 10, "watsonx_debug")
await watsonx_debug()
if __name__ == "__main__":
try:
asyncio.run(main())
except FrameworkError as e:
traceback.print_exc()
sys.exit(e.explain())
Source: examples/backend/providers/watsonx.py
All providers examples can be found in examples/backend/providers.
Tip
See the events documentation for more information on standard emitter events.
The ChatModel
class represents a Chat Large Language Model and provides methods for text generation, streaming responses, and more. You can initialize a chat model in multiple ways:
Method 1: Using the generic factory method
from beeai_framework.backend.chat import ChatModel
ollama_chat_model = ChatModel.from_name("ollama:llama3.1")
Method 2: Creating a specific provider model directly
from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel
ollama_chat_model = OllamaChatModel("llama3.1")
You can configure various parameters for your chat model:
import asyncio
import sys
import traceback
from beeai_framework.adapters.ollama import OllamaChatModel
from beeai_framework.backend import UserMessage
from beeai_framework.errors import FrameworkError
from examples.helpers.io import ConsoleReader
async def main() -> None:
llm = OllamaChatModel("llama3.1")
# Optionally one may set llm parameters
llm.parameters.max_tokens = 10000 # high number yields longer potential output
llm.parameters.top_p = 0 # higher number yields more complex vocabulary, recommend only changing p or k
llm.parameters.frequency_penalty = 0 # higher number yields reduction in word reptition
llm.parameters.temperature = 0 # higher number yields greater randomness and variation
llm.parameters.top_k = 0 # higher number yields more variance, recommend only changing p or k
llm.parameters.n = 1 # higher number yields more choices
llm.parameters.presence_penalty = 0 # higher number yields reduction in repetition of words
llm.parameters.seed = 10 # can help produce similar responses if prompt and seed are always the same
llm.parameters.stop_sequences = ["q", "quit", "ahhhhhhhhh"] # stops the model on input of any of these strings
llm.parameters.stream = False # determines whether or not to use streaming to receive incremental data
reader = ConsoleReader()
for prompt in reader:
response = await llm.create(messages=[UserMessage(prompt)])
reader.write("LLM 🤖 (txt) : ", response.get_text_content())
reader.write("LLM 🤖 (raw) : ", "\n".join([str(msg.to_plain()) for msg in response.messages]))
if __name__ == "__main__":
try:
asyncio.run(main())
except FrameworkError as e:
traceback.print_exc()
sys.exit(e.explain())
Source: examples/backend/chat.py
The most basic usage is to generate text responses:
from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel
from beeai_framework.backend.message import UserMessage
ollama_chat_model = OllamaChatModel("llama3.1")
response = await ollama_chat_model.create(
messages=[UserMessage("what states are part of New England?")]
)
print(response.get_text_content())
Note
Execution parameters (those passed to model.create({...})
) are superior to ones defined via config
.
For applications requiring real-time responses:
from beeai_framework.adapters.ollama.backend.chat import OllamaChatModel
from beeai_framework.backend.message import UserMessage
llm = OllamaChatModel("llama3.1")
user_message = UserMessage("How many islands make up the country of Cape Verde?")
response = await llm.create(messages=[user_message], stream=True)
Generate structured data according to a schema:
import asyncio
import json
import sys
import traceback
from pydantic import BaseModel, Field
from beeai_framework.backend import ChatModel, UserMessage
from beeai_framework.errors import FrameworkError
async def main() -> None:
model = ChatModel.from_name("ollama:llama3.1")
class ProfileSchema(BaseModel):
first_name: str = Field(..., min_length=1)
last_name: str = Field(..., min_length=1)
address: str
age: int = Field(..., min_length=1)
hobby: str
class ErrorSchema(BaseModel):
error: str
class SchemUnion(ProfileSchema, ErrorSchema):
pass
response = await model.create_structure(
schema=SchemUnion,
messages=[UserMessage("Generate a profile of a citizen of Europe.")],
)
print(
json.dumps(
response.object.model_dump() if isinstance(response.object, BaseModel) else response.object, indent=4
)
)
if __name__ == "__main__":
try:
asyncio.run(main())
except FrameworkError as e:
traceback.print_exc()
sys.exit(e.explain())
Source: /examples/backend/structured.py
Integrate external tools with your AI model:
import asyncio
import json
import re
import sys
import traceback
from beeai_framework.backend import (
AnyMessage,
ChatModel,
ChatModelParameters,
MessageToolResultContent,
SystemMessage,
ToolMessage,
UserMessage,
)
from beeai_framework.errors import FrameworkError
from beeai_framework.tools import AnyTool, ToolOutput
from beeai_framework.tools.search.duckduckgo import DuckDuckGoSearchTool
from beeai_framework.tools.weather.openmeteo import OpenMeteoTool
async def main() -> None:
model = ChatModel.from_name("ollama:llama3.1", ChatModelParameters(temperature=0))
tools: list[AnyTool] = [DuckDuckGoSearchTool(), OpenMeteoTool()]
messages: list[AnyMessage] = [
SystemMessage("You are a helpful assistant. Use tools to provide a correct answer."),
UserMessage("What's the fastest marathon time?"),
]
while True:
response = await model.create(
messages=messages,
tools=tools,
)
tool_calls = response.get_tool_calls()
tool_results: list[ToolMessage] = []
for tool_call in tool_calls:
print(f"-> running '{tool_call.tool_name}' tool with {tool_call.args}")
tool: AnyTool = next(tool for tool in tools if tool.name == tool_call.tool_name)
assert tool is not None
res: ToolOutput = await tool.run(json.loads(tool_call.args))
result = res.get_text_content()
print(f"<- got response from '{tool_call.tool_name}'", re.sub(r"\s+", " ", result)[:90] + " (truncated)")
tool_results.append(
ToolMessage(
MessageToolResultContent(
result=result,
tool_name=tool_call.tool_name,
tool_call_id=tool_call.id,
)
)
)
messages.extend(tool_results)
answer = response.get_text_content()
if answer:
print(f"Agent: {answer}")
break
if __name__ == "__main__":
try:
asyncio.run(main())
except FrameworkError as e:
traceback.print_exc()
sys.exit(e.explain())
Source: /examples/backend/tool_calling.py
The EmbedingModel
class provides functionality for generating vector embeddings from text.
You can initialize an embedding model in multiple ways:
Method 1: Using the generic factory method
Coming soon
Method 2: Creating a specific provider model directly
Coming soon
Generate embeddings for one or more text strings:
Coming soon
If your preferred provider isn't directly supported, you can use the LangChain adapter as a bridge.
This allows you to leverage any provider that has LangChain compatibility.
Coming soon
Source: /examples/backend/providers/langchain.py
Common issues and their solutions:
- Authentication errors: Ensure all required environment variables are set correctly
- Model not found: Verify that the model ID is correct and available for the selected provider
- All backend examples can be found in here.