-
Notifications
You must be signed in to change notification settings - Fork 279
/
Copy pathchat.py
39 lines (31 loc) · 1.74 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import asyncio
import sys
import traceback
from beeai_framework.adapters.ollama import OllamaChatModel
from beeai_framework.backend import UserMessage
from beeai_framework.errors import FrameworkError
from examples.helpers.io import ConsoleReader
async def main() -> None:
llm = OllamaChatModel("llama3.1")
# Optionally one may set llm parameters
llm.parameters.max_tokens = 10000 # high number yields longer potential output
llm.parameters.top_p = 0 # higher number yields more complex vocabulary, recommend only changing p or k
llm.parameters.frequency_penalty = 0 # higher number yields reduction in word reptition
llm.parameters.temperature = 0 # higher number yields greater randomness and variation
llm.parameters.top_k = 0 # higher number yields more variance, recommend only changing p or k
llm.parameters.n = 1 # higher number yields more choices
llm.parameters.presence_penalty = 0 # higher number yields reduction in repetition of words
llm.parameters.seed = 10 # can help produce similar responses if prompt and seed are always the same
llm.parameters.stop_sequences = ["q", "quit", "ahhhhhhhhh"] # stops the model on input of any of these strings
llm.parameters.stream = False # determines whether or not to use streaming to receive incremental data
reader = ConsoleReader()
for prompt in reader:
response = await llm.create(messages=[UserMessage(prompt)])
reader.write("LLM 🤖 (txt) : ", response.get_text_content())
reader.write("LLM 🤖 (raw) : ", "\n".join([str(msg.to_plain()) for msg in response.messages]))
if __name__ == "__main__":
try:
asyncio.run(main())
except FrameworkError as e:
traceback.print_exc()
sys.exit(e.explain())