Build BERT Transformer model from config or using pretrained Tensorflow models
wget https://storage.googleapis.com/bert_models/2020_02_20/uncased_L-2_H-128_A-2.zip
unzip uncased_L-2_H-128_A-2.zip -d uncased_L-2_H-128_A-2
import ConvertModel
model_dir = "uncased_L-2_H-128_A-2"
bert_encoder = ConvertModel.from_tf1_checkpoint(model_dir) # Tensorflow BERT models were trained using TF1
ExampleConfig.json
{
"hidden_size": 128,
"hidden_act": "gelu",
"initializer_range": 0.02,
"vocab_size": 30522,
"hidden_dropout_prob": 0.1,
"num_attention_heads": 2,
"type_vocab_size": 2,
"max_position_embeddings": 512,
"num_hidden_layers": 2,
"intermediate_size": 512,
"attention_probs_dropout_prob": 0.1
}
import ConvertModel
bert_encoder = ConvertModel.from_config("ExampleConfig.json")
