Skip to content

Commit 0f7e7b3

Browse files
committed
Lint
1 parent d5752bd commit 0f7e7b3

File tree

1 file changed

+25
-10
lines changed

1 file changed

+25
-10
lines changed

src/vivarium_gates_mncnh/data/loader.py

Lines changed: 25 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1389,13 +1389,19 @@ def load_oral_iron_effect_size(
13891389
def load_ifa_excess_shift(
13901390
key: str, location: str, years: Optional[Union[int, str, List[int]]] = None
13911391
) -> pd.DataFrame:
1392-
gestational_age_shift = load_ifa_weighted_avg_shift(key, location).groupby(
1393-
metadata.ARTIFACT_INDEX_COLUMNS + ["affected_entity", "affected_measure", "parameter"]
1394-
).sum()
1392+
gestational_age_shift = (
1393+
load_ifa_weighted_avg_shift(key, location)
1394+
.groupby(
1395+
metadata.ARTIFACT_INDEX_COLUMNS
1396+
+ ["affected_entity", "affected_measure", "parameter"]
1397+
)
1398+
.sum()
1399+
)
13951400
birth_weight_shift = load_excess_shift(key, location)[gestational_age_shift.columns]
13961401
all_ages_data = pd.concat([birth_weight_shift, gestational_age_shift])
13971402
return all_ages_data.query("age_end <= 5.0")
13981403

1404+
13991405
def load_ifa_weighted_avg_shift(
14001406
key: str, location: str, years: Optional[Union[int, str, List[int]]] = None
14011407
) -> pd.DataFrame:
@@ -1404,6 +1410,7 @@ def load_ifa_weighted_avg_shift(
14041410
anc_proportion = get_data(data_keys.ANC.ANC1, location)[shift_anc.columns]
14051411
return shift_anc * anc_proportion + shift_non_anc * (1 - anc_proportion)
14061412

1413+
14071414
def load_risk_specific_shift(
14081415
key: str, location: str, years: Optional[Union[int, str, List[int]]] = None
14091416
) -> pd.DataFrame:
@@ -1422,9 +1429,11 @@ def load_risk_specific_shift(
14221429
0.0, columns=single_cat_shift.columns, index=single_cat_shift.index
14231430
)
14241431
else:
1425-
1432+
14261433
excess_shift = load_ifa_weighted_avg_shift(key, location)
1427-
exposure = get_data(data_keys.IFA_SUPPLEMENTATION.COVERAGE, location)[excess_shift.columns]
1434+
exposure = get_data(data_keys.IFA_SUPPLEMENTATION.COVERAGE, location)[
1435+
excess_shift.columns
1436+
]
14281437
anc_proportion = get_data(data_keys.ANC.ANC1, location)[excess_shift.columns]
14291438

14301439
risk_specific_ga_shift = (
@@ -1434,10 +1443,14 @@ def load_risk_specific_shift(
14341443
)
14351444
.sum() # cat1 == 0
14361445
)
1437-
1438-
birth_weight_shift = load_excess_shift(key, location)[excess_shift.columns].groupby(
1439-
metadata.ARTIFACT_INDEX_COLUMNS + ["affected_entity", "affected_measure"]
1440-
).sum() # cat1 == 0
1446+
1447+
birth_weight_shift = (
1448+
load_excess_shift(key, location)[excess_shift.columns]
1449+
.groupby(
1450+
metadata.ARTIFACT_INDEX_COLUMNS + ["affected_entity", "affected_measure"]
1451+
)
1452+
.sum()
1453+
) # cat1 == 0
14411454
risk_specific_shift = pd.concat([birth_weight_shift, risk_specific_ga_shift])
14421455

14431456
return risk_specific_shift
@@ -1453,7 +1466,9 @@ def load_excess_shift(
14531466
]["birth_weight.birth_exposure"],
14541467
data_keys.IFA_SUPPLEMENTATION.RISK_SPECIFIC_SHIFT: data_values.ORAL_IRON_EFFECT_SIZES[
14551468
data_keys.IFA_SUPPLEMENTATION.EFFECT_SIZE
1456-
]["birth_weight.birth_exposure"],
1469+
][
1470+
"birth_weight.birth_exposure"
1471+
],
14571472
data_keys.MMN_SUPPLEMENTATION.EXCESS_SHIFT: data_values.ORAL_IRON_EFFECT_SIZES[
14581473
data_keys.MMN_SUPPLEMENTATION.EFFECT_SIZE
14591474
]["birth_weight.birth_exposure"],

0 commit comments

Comments
 (0)