-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
140 lines (115 loc) · 5.57 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
## utility functions for the robot ##
#
def summary(model, input_size, batch_size=-1, device="cuda"):
def register_hook(module):
def hook(module, input, output):
class_name = str(module.__class__).split(".")[-1].split("'")[0]
module_idx = len(summary)
m_key = "%s-%i" % (class_name, module_idx + 1)
summary[m_key] = OrderedDict()
summary[m_key]["input_shape"] = list(input[0].size())
summary[m_key]["input_shape"][0] = batch_size
if isinstance(output, (list, tuple)):
summary[m_key]["output_shape"] = [[-1] + list(o.size())[1:] for o in output]
else:
summary[m_key]["output_shape"] = list(output.size())
summary[m_key]["output_shape"][0] = batch_size
params = 0
if hasattr(module, "weight") and hasattr(module.weight, "size"):
params += torch.prod(torch.LongTensor(list(module.weight.size())))
summary[m_key]["trainable"] = module.weight.requires_grad
if hasattr(module, "bias") and hasattr(module.bias, "size"):
params += torch.prod(torch.LongTensor(list(module.bias.size())))
summary[m_key]["nb_params"] = params
if not isinstance(module, nn.Sequential) and not isinstance(module, nn.ModuleList) and not (module == model):
hooks.append(module.register_forward_hook(hook))
device = device.lower()
assert device in ["cuda", "cpu"], "Input device is not valid, please specify 'cuda' or 'cpu'"
if device == "cuda" and torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
# multiple inputs to the network
if isinstance(input_size, tuple):
input_size = [input_size]
# batch_size of 2 for batchnorm
x = [torch.rand(2, *in_size).type(dtype) for in_size in input_size]
# print(type(x[0]))
# create properties
summary = OrderedDict()
hooks = []
# register hook
model.apply(register_hook)
# make a forward pass
# print(x.shape)
model(*x)
# remove these hooks
for h in hooks:
h.remove()
print("----------------------------------------------------------------")
line_new = "{:>20} {:>25} {:>15}".format("Layer (type)", "Output Shape", "Param #")
print(line_new)
print("================================================================")
total_params = 0
total_output = 0
trainable_params = 0
for layer in summary:
# input_shape, output_shape, trainable, nb_params
line_new = "{:>20} {:>25} {:>15}".format(
layer, str(summary[layer]["output_shape"]), "{0:,}".format(summary[layer]["nb_params"])
)
total_params += summary[layer]["nb_params"]
total_output += np.prod(summary[layer]["output_shape"])
if "trainable" in summary[layer]:
if summary[layer]["trainable"] == True:
trainable_params += summary[layer]["nb_params"]
print(line_new)
# assume 4 bytes/number (float on cuda).
total_input_size = abs(np.prod(input_size) * batch_size * 4.0 / (1024 ** 2.0))
total_output_size = abs(2.0 * total_output * 4.0 / (1024 ** 2.0)) # x2 for gradients
total_params_size = abs(total_params.numpy() * 4.0 / (1024 ** 2.0))
total_size = total_params_size + total_output_size + total_input_size
print("================================================================")
print("Total params: {0:,}".format(total_params))
print("Trainable params: {0:,}".format(trainable_params))
print("Non-trainable params: {0:,}".format(total_params - trainable_params))
print("----------------------------------------------------------------")
print("Input size (MB): %0.2f" % total_input_size)
print("Forward/backward pass size (MB): %0.2f" % total_output_size)
print("Params size (MB): %0.2f" % total_params_size)
print("Estimated Total Size (MB): %0.2f" % total_size)
print("----------------------------------------------------------------")
# ref: https://github.com/constantinpape/vis_tools/blob/master/vis_tools/edges.py#L5
def make_edges3d(segmentation):
""" Make 3d edge volume from 3d segmentation
"""
# NOTE we add one here to make sure that we don't have zero in the segmentation
gz = convolve(segmentation + 1, np.array([-1.0, 0.0, 1.0]).reshape(3, 1, 1))
gy = convolve(segmentation + 1, np.array([-1.0, 0.0, 1.0]).reshape(1, 3, 1))
gx = convolve(segmentation + 1, np.array([-1.0, 0.0, 1.0]).reshape(1, 1, 3))
return (gx ** 2 + gy ** 2 + gz ** 2) > 0
# create patches
def tile_image(image_shape, tile_size):
tiles = []
(w, h) = image_shape[len(image_shape) - 2], image_shape[len(image_shape) - 1]
for wsi in range(0, w - tile_size + 1, int(tile_size)):
for hsi in range(0, h - tile_size + 1, int(tile_size)):
img = [wsi, wsi + tile_size, hsi, hsi + tile_size]
tiles.append(img)
if h % tile_size != 0:
for wsi in range(0, w - tile_size + 1, int(tile_size)):
img = [wsi, wsi + tile_size, h - tile_size, h]
tiles.append(img)
if w % tile_size != 0:
for hsi in range(0, h - tile_size + 1, int(tile_size)):
img = [w - tile_size, w, hsi, hsi + tile_size]
tiles.append(img)
if w % tile_size != 0 and h % tile_size != 0:
img = [w - tile_size, w, h - tile_size, h]
tiles.append(img)
x = []
for i in range(len(image_shape) - 2):
x.append([0, image_shape[i]])
for i in range(len(tiles)):
tiles[i] = x + tiles[i]
return tiles