-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathDefaultPSNR.java
101 lines (89 loc) · 3.45 KB
/
DefaultPSNR.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
* #%L
* ImageJ software for multidimensional image processing and analysis.
* %%
* Copyright (C) 2014 - 2018 ImageJ developers.
* %%
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* #L%
*/
package net.imagej.ops.image.quality;
import net.imagej.ops.Contingent;
import net.imagej.ops.OpService;
import net.imagej.ops.Ops;
import net.imagej.ops.map.Maps;
import net.imagej.ops.special.hybrid.AbstractBinaryHybridCF;
import net.imglib2.Cursor;
import net.imglib2.IterableInterval;
import net.imglib2.type.numeric.RealType;
import net.imglib2.type.numeric.real.DoubleType;
import net.imglib2.util.Intervals;
import org.scijava.plugin.Parameter;
import org.scijava.plugin.Plugin;
/**
* Computes peak signal-to-noise ratio (PSNR) between a reference image and a
* (noisy) test image. The resulting PSNR is expressed in decibel.
* <p>
* Computations are based on the definitions of Gonzalez (R.C. Gonzalez and R.E.
* Woods, "Digital Image Processing," Prentice Hall 2008).
* </p>
*
* @author Stefan Helfrich (University of Konstanz)
* @param <I> type of input elements
*/
@Plugin(type = Ops.Image.PSNR.class)
public class DefaultPSNR<I extends RealType<I>> extends
AbstractBinaryHybridCF<IterableInterval<I>, IterableInterval<I>, DoubleType>
implements Ops.Image.PSNR, Contingent
{
@Parameter
private OpService opService;
@Override
public void compute(final IterableInterval<I> input1,
final IterableInterval<I> input2, final DoubleType output)
{
final Cursor<I> cursor = input1.cursor();
final Cursor<I> cursor2 = input2.cursor();
double max = opService.stats().max(input1).getRealDouble();
max *= max;
double denominatorSum = 0d;
while (cursor.hasNext()) {
final double r = cursor.next().getRealDouble();
final double t = cursor2.next().getRealDouble();
denominatorSum += Math.pow(r - t, 2);
}
denominatorSum *= 1d / Intervals.numElements(input1);
final double psnr = 10 * Math.log10(max / denominatorSum);
output.setReal(psnr);
}
@Override
public boolean conforms() {
return Intervals.equalDimensions(in1(), in2()) && //
Maps.compatible(in1(), in2());
}
@Override
public DoubleType createOutput(final IterableInterval<I> input1,
final IterableInterval<I> input2)
{
return new DoubleType();
}
}