-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfind_epicenter.py
127 lines (117 loc) · 2.74 KB
/
find_epicenter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from pylab import *
import numpy as np
import random
from obspy.core import UTCDateTime
from obspy.taup import TauPyModel
model = TauPyModel(model="iasp91")
f=open("/home/cogito/Desktop/Estaciones_RSSB.txt", "r")
#Stations names
#Vector for storing X data from each station
NN=[]
XX=[]
YY=[]
ZZ=[]
PP=[]
SS=[]
SP=[]
xh=[]
yh=[]
zh=[]
Tp=[]
Ts=[]
Tsp=[]
i=0
for line in f:
line = line.strip()
columns = line.split()
nombre = columns[0]
x = float(columns[1])
y = float(columns[2])
z = -float(columns[3])/1000
PA = float(columns[4])
PM = float(columns[5])
PD = float(columns[6])
Ph = float(columns[7])
Pm = float(columns[8])
Ps = float(columns[9])
Sh = float(columns[10])
Sm = float(columns[11])
Ss = float(columns[12])
Pol = columns[13]
print(nombre, x, y, z, Ph, Pm, Ps, Sh, Sm, Ss, Pol)
NN.append([nombre])
XX.append(x)
YY.append(y)
ZZ.append(z)
#PP.append(3600*(Ph-1)+60*(Pm-1)+Ps)
#SS.append(3600*(Sh-1)+60*(Sm-1)+Ss)
#SP.append(SS[i]-PP[i])
Tp.append(UTCDateTime(int(PA), int(PM), int(PD), int(Ph), int(Pm), int(Ps)))
Ts.append(UTCDateTime(int(PA), int(PM), int(PD), int(Sh), int(Sm), int(Ss)))
Tsp.append(Ts[i]-Tp[i])
i+=1
TR = min(Tp)
Tss = []
Tpp = []
xh.append(random.uniform(min(XX),max(XX)))
yh.append(random.uniform(min(YY),max(YY)))
#zh.append(random.uniform(0,111))
zh.append(1.0)
xx=np.array(XX)
yy=np.array(YY)
zz=np.array(ZZ)
k=1
rms=100
N=1000
RMS=[]
#We apply Wadati
for ii in range(i):
Tss.append(Ts[ii]-TR)
Tpp.append(Tp[ii]-TR)
#m,b = polyfit(SP, SS, 1)
m,b = polyfit(Tsp, Tpp, 1)
print(m, b)
To = TR+b
print('Origin Time: ',To)
a=np.array(Tsp)
p=np.array(Tpp)-b
s=np.array(Tss)-b
plot(Tsp, Tpp, 'yo', Tsp, m*a+b, '--k')
show()
while (rms > 0.5):
zh.append(float(k-1))
arrivalP=[]
d=np.power((np.power(xx-xh[k-1],2)+np.power(yy-yh[k-1],2)),0.5)
for i in d:
arrivals = model.get_travel_times(source_depth_in_km=zh[k-1],distance_in_degree=i)
#print(arrivals[0])
arrivalP.append(arrivals[0].time)
r=arrivalP-p
dT_dx=r/((xh[k-1]-xx)*111)
dT_dy=r/((yh[k-1]-yy)*111)
dT_dz=r/((zh[k-1]-zz))
A=np.ones((len(d), 4))
for i in range (0, len(d)):
A[i,1]=dT_dx[i]
A[i,2]=dT_dy[i]
A[i,3]=dT_dz[i]
A=-A
#dh=-np.linalg.inv(A.T@A)@A.T@r
#For showing convergence effects, vary theta, 0.001, 0.1, 10, ...
theta=10
theta2=np.power(theta,2)
I=np.identity(4)
dh=-np.linalg.inv(A.T@A+theta2*I)@A.T@r
#print(dh)
xh.append(xh[k-1]+dh[1]/111)
yh.append(yh[k-1]+dh[2]/111)
zh.append(zh[k-1]+dh[3])
p=p+dh[0]
rms=np.power(sum((np.power((arrivalP-p),2))/len(d)),0.5)
print(rms, k)
RMS.append(float(rms))
k=k+1
if k == N:
break
i=range(0,len(RMS))
plot(i[1:100],RMS[1:100],'ro')