|
| 1 | +#!/usr/bin/env python |
| 2 | + |
| 3 | +__copyright__ = """ |
| 4 | +Copyright (C) 2023 Kaushik Kulkarni |
| 5 | +""" |
| 6 | + |
| 7 | +__license__ = """ |
| 8 | +Permission is hereby granted, free of charge, to any person obtaining a copy |
| 9 | +of this software and associated documentation files (the "Software"), to deal |
| 10 | +in the Software without restriction, including without limitation the rights |
| 11 | +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 12 | +copies of the Software, and to permit persons to whom the Software is |
| 13 | +furnished to do so, subject to the following conditions: |
| 14 | +
|
| 15 | +The above copyright notice and this permission notice shall be included in |
| 16 | +all copies or substantial portions of the Software. |
| 17 | +
|
| 18 | +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 19 | +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 20 | +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 21 | +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 22 | +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 23 | +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 24 | +THE SOFTWARE. |
| 25 | +""" |
| 26 | + |
| 27 | +import sys |
| 28 | +import numpy as np |
| 29 | +import pytato as pt |
| 30 | +from pyopencl.tools import ( # noqa: F401 |
| 31 | + pytest_generate_tests_for_pyopencl as pytest_generate_tests) |
| 32 | + |
| 33 | + |
| 34 | +def test_apply_einsum_distributive_law_0(): |
| 35 | + from pytato.transform.einsum_distributive_law import ( |
| 36 | + EinsumDistributiveLawDescriptor, |
| 37 | + DoDistribute, DoNotDistribute, |
| 38 | + apply_distributive_property_to_einsums, |
| 39 | + ) |
| 40 | + |
| 41 | + def how_to_distribute( |
| 42 | + expr: pt.Einsum) -> EinsumDistributiveLawDescriptor: |
| 43 | + if pt.analysis.is_einsum_similar_to_subscript( |
| 44 | + expr, "ij,j->i"): |
| 45 | + return DoDistribute(ioperand=1) |
| 46 | + else: |
| 47 | + return DoNotDistribute() |
| 48 | + |
| 49 | + x1 = pt.make_placeholder("x1", 4, np.float64) |
| 50 | + x2 = pt.make_placeholder("x2", 4, np.float64) |
| 51 | + A1 = pt.make_placeholder("A1", (10, 4), np.float64) |
| 52 | + A2 = pt.make_placeholder("A2", (10, 4), np.float64) |
| 53 | + y = (7*A1 + 8*A2) @ (2*x1-3*x2) |
| 54 | + y_transformed = apply_distributive_property_to_einsums(y, how_to_distribute) |
| 55 | + |
| 56 | + assert y_transformed == ((2 * ((7*A1 + 8*A2) @ x1) - 3 * ((7*A1 + 8*A2) @ |
| 57 | + x2))) |
| 58 | + |
| 59 | + |
| 60 | +def test_apply_einsum_distributive_law_1(): |
| 61 | + from pytato.transform.einsum_distributive_law import ( |
| 62 | + EinsumDistributiveLawDescriptor, |
| 63 | + DoDistribute, DoNotDistribute, |
| 64 | + apply_distributive_property_to_einsums, |
| 65 | + ) |
| 66 | + |
| 67 | + def how_to_distribute( |
| 68 | + expr: pt.Einsum) -> EinsumDistributiveLawDescriptor: |
| 69 | + if pt.analysis.is_einsum_similar_to_subscript( |
| 70 | + expr, "ij,j->i"): |
| 71 | + return DoDistribute(ioperand=0) |
| 72 | + else: |
| 73 | + return DoNotDistribute() |
| 74 | + |
| 75 | + x1 = pt.make_placeholder("x1", 4, np.float64) |
| 76 | + x2 = pt.make_placeholder("x2", 4, np.float64) |
| 77 | + A1 = pt.make_placeholder("A1", (10, 4), np.float64) |
| 78 | + A2 = pt.make_placeholder("A2", (10, 4), np.float64) |
| 79 | + y = (7*A1 + 8*pt.sin(A2)) @ (2*x1-3*x2) |
| 80 | + y_transformed = apply_distributive_property_to_einsums(y, how_to_distribute) |
| 81 | + print(y_transformed) |
| 82 | + assert y_transformed == (7 * (A1 @ (2*x1-3*x2)) + 8 * (pt.sin(A2) @ (2*x1-3*x2))) |
| 83 | + |
| 84 | + |
| 85 | +def test_apply_einsum_distributive_law_2(): |
| 86 | + from pytato.transform.einsum_distributive_law import ( |
| 87 | + EinsumDistributiveLawDescriptor, |
| 88 | + DoDistribute, DoNotDistribute, |
| 89 | + apply_distributive_property_to_einsums, |
| 90 | + ) |
| 91 | + |
| 92 | + def how_to_distribute( |
| 93 | + expr: pt.Einsum) -> EinsumDistributiveLawDescriptor: |
| 94 | + if (pt.analysis.is_einsum_similar_to_subscript( |
| 95 | + expr, "ij,j->i") and |
| 96 | + pt.utils.are_shape_components_equal(expr.args[1].shape[0], |
| 97 | + 10)): |
| 98 | + return DoDistribute(ioperand=1) |
| 99 | + else: |
| 100 | + return DoNotDistribute() |
| 101 | + |
| 102 | + x1 = pt.make_placeholder("x1", 4, np.float64) |
| 103 | + x2 = pt.make_placeholder("x2", 4, np.float64) |
| 104 | + A1 = pt.make_placeholder("A1", (10, 10), np.float64) |
| 105 | + A2 = pt.make_placeholder("A2", (10, 10), np.float64) |
| 106 | + B = pt.make_placeholder("B", (10, 4), np.float64) |
| 107 | + y = (7*A1 + 8*A2) @ (2*(B@x1)-3*(B@x2)) |
| 108 | + y_transformed = apply_distributive_property_to_einsums(y, how_to_distribute) |
| 109 | + |
| 110 | + assert y_transformed == (2 * ((7*A1 + 8*A2) @ (B@x1)) |
| 111 | + - 3 * ((7*A1 + 8*A2) @ (B@x2))) |
| 112 | + |
| 113 | + |
| 114 | +if __name__ == "__main__": |
| 115 | + if len(sys.argv) > 1: |
| 116 | + exec(sys.argv[1]) |
| 117 | + else: |
| 118 | + from pytest import main |
| 119 | + main([__file__]) |
| 120 | + |
| 121 | +# vim: fdm=marker |
0 commit comments