-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathinterval.jl
312 lines (237 loc) · 9.28 KB
/
interval.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import TimeZones: astimezone
"""
Interval(first, last, [inclusivity::Inclusivity]) -> Interval
Interval(first, last, [closed_left::Bool, closed_right::Bool]) -> Interval
An `Interval` represents a non-iterable range or span of values (non-interable because,
unlike a `StepRange`, no step is defined).
An `Interval` can be closed (both `first` and `last` are included in the interval), open
(neither `first` nor `last` are included), or half-open. This openness is defined by an
`Inclusivity` value, which defaults to closed.
### Example
```julia
julia> i = Interval(0, 100, true, false)
Interval{Int64}(0, 100, Inclusivity(true, false))
julia> in(0, i)
true
julia> in(50, i)
true
julia> in(100, i)
false
julia> intersect(Interval(0, 25, false, false), Interval(20, 50, true, true)
Interval{Int64}(20, 25, Inclusivity(true, false))
```
### Infix Constructor: `..`
A closed `Interval` can be constructed with the `..` infix constructor:
```julia
julia> Dates.today() - Dates.Week(1) .. Dates.today()
Interval{Date}(2018-01-24, 2018-01-31, Inclusivity(true, true))
```
### Note on Ordering
The `Interval` constructor will compare `first` and `last`; if it finds that
`first > last`, they will be reversed to ensure that `first < last`. This simplifies
calls to `in` and `intersect`:
```julia
julia> i = Interval(Date(2016, 8, 11), Date(2013, 2, 13), false, true)
Interval{Date}(2013-02-13, 2016-08-11, Inclusivity(true, false))
```
Note that the `Inclusivity` value is also reversed in this case.
See also: [`AnchoredInterval`](@ref), [`Inclusivity`](@ref)
"""
struct Interval{T} <: AbstractInterval{T}
first::T
last::T
inclusivity::Inclusivity
function Interval{T}(f::T, l::T, inc::Inclusivity) where T
# Ensure that `first` preceeds `last`.
f, l, inc = if f ≤ l
f, l, inc
else
l, f, Inclusivity(last(inc), first(inc))
end
return new(f, l, inc)
end
end
Interval{T}(f::T, l::T, x::Bool, y::Bool) where T = Interval{T}(f, l, Inclusivity(x, y))
Interval{T}(f::T, l::T) where T = Interval{T}(f, l, Inclusivity(true, true))
Interval(f::T, l::T, inc...) where T = Interval{T}(f, l, inc...)
Interval{T}(f, l, inc...) where T = Interval{T}(convert(T, f), convert(T, l), inc...)
Interval(f, l, inc...) = Interval(promote(f, l)..., inc...)
(..)(first, last) = Interval(first, last)
# In Julia 0.7 constructors no longer automatically fall back to using `convert`
Interval(interval::AbstractInterval) = convert(Interval, interval)
Interval{T}(interval::AbstractInterval) where T = convert(Interval{T}, interval)
# Empty Intervals
Interval{T}() where T = Interval{T}(zero(T), zero(T), Inclusivity(false, false))
Interval{T}() where T <: TimeType = Interval{T}(T(0), T(0), Inclusivity(false, false))
function Interval{T}() where T <: ZonedDateTime
return Interval{T}(T(0, tz"UTC"), T(0, tz"UTC"), Inclusivity(false, false))
end
Base.copy(x::Interval{T}) where T = Interval{T}(x.first, x.last, x.inclusivity)
##### ACCESSORS #####
Base.first(interval::Interval) = interval.first
Base.last(interval::Interval) = interval.last
span(interval::Interval) = interval.last - interval.first
inclusivity(interval::AbstractInterval) = interval.inclusivity
isclosed(interval::AbstractInterval) = isclosed(inclusivity(interval))
Base.isopen(interval::AbstractInterval) = isopen(inclusivity(interval))
##### CONVERSION #####
function Base.convert(::Type{T}, i::Interval{T}) where T
first(i) == last(i) && isclosed(i) && return first(i)
throw(DomainError(i, "The interval is not closed with coinciding endpoints"))
end
# Date/DateTime attempt to convert to Int64 instead of falling back to convert(T, ...)
Compat.Dates.Date(interval::Interval{Date}) = convert(Date, interval)
Compat.Dates.DateTime(interval::Interval{DateTime}) = convert(DateTime, interval)
##### DISPLAY #####
function Base.show(io::IO, interval::Interval{T}) where T
if get(io, :compact, false)
print(io, interval)
else
print(io, "Interval{$T}(")
show(io, interval.first)
print(io, ", ")
show(io, interval.last)
print(io, ", ")
show(io, interval.inclusivity)
print(io, ")")
end
end
function Base.print(io::IO, interval::AbstractInterval)
# Print to io in order to keep properties like :limit and :compact
if get(io, :compact, false)
io = IOContext(io, :limit=>true)
end
print(
io,
first(inclusivity(interval)) ? "[" : "(",
first(interval),
" .. ",
last(interval),
last(inclusivity(interval)) ? "]" : ")",
)
end
##### ARITHMETIC #####
Base.:+(a::T, b) where {T <: Interval} = T(first(a) + b, last(a) + b, inclusivity(a))
Base.:+(a, b::Interval) = b + a
Base.:-(a::Interval, b) = a + -b
Base.:-(a, b::Interval) = a + -b
function Base.:-(a::Interval{T}) where T
inc = inclusivity(a)
Interval{T}(-last(a), -first(a), Inclusivity(last(inc), first(inc)))
end
##### EQUALITY #####
function Base.:(==)(a::AbstractInterval, b::AbstractInterval)
return LeftEndpoint(a) == LeftEndpoint(b) && RightEndpoint(a) == RightEndpoint(b)
end
# While it might be convincingly argued that this should define < instead of isless (see
# https://github.com/invenia/Intervals.jl/issues/14), this breaks sort.
Base.isless(a::AbstractInterval, b) = LeftEndpoint(a) < b
Base.isless(a, b::AbstractInterval) = a < LeftEndpoint(b)
function Base.isless(a::AbstractInterval, b::AbstractInterval)
return LeftEndpoint(a) < LeftEndpoint(b)
end
isless_disjoint(a::AbstractInterval, b) = RightEndpoint(a) < b
isless_disjoint(a, b::AbstractInterval) = a < LeftEndpoint(b)
function isless_disjoint(a::AbstractInterval, b::AbstractInterval)
return RightEndpoint(a) < LeftEndpoint(b)
end
"""
≪(a::AbstractInterval, b::AbstractInterval) -> Bool
Less than and disjoint comparison operator. Returns `true` if `a` is less than `b` and they
are disjoint (they do not overlap).
```
julia> 0..10 ≪ 10..20
false
julia> 0..10 ≪ 11..20
true
```
"""
≪(a, b) = isless_disjoint(a, b)
# ≪̸(a, b) = !≪(a, b)
"""
≫(a::AbstractInterval, b::AbstractInterval) -> Bool
Greater than and disjoint comparison operator. Returns `true` if `a` is greater than `b` and
they are disjoint (they do not overlap).
```
julia> 10..20 ≫ 0..10
false
julia> 11..20 ≫ 0..10
true
```
"""
≫(a, b) = isless_disjoint(b, a)
# ≫̸(a, b) = !≫(a, b)
##### SET OPERATIONS #####
Base.isempty(i::AbstractInterval) = LeftEndpoint(i) > RightEndpoint(i)
Base.in(a::T, b::AbstractInterval{T}) where T = !(a ≫ b || a ≪ b)
function Base.issubset(a::AbstractInterval, b::AbstractInterval)
return LeftEndpoint(a) ≥ LeftEndpoint(b) && RightEndpoint(a) ≤ RightEndpoint(b)
end
Base.:⊈(a::AbstractInterval, b::AbstractInterval) = !issubset(a, b)
Base.:⊉(a::AbstractInterval, b::AbstractInterval) = !issubset(b, a)
function overlaps(a::AbstractInterval, b::AbstractInterval)
left = max(LeftEndpoint(a), LeftEndpoint(b))
right = min(RightEndpoint(a), RightEndpoint(b))
return left <= right
end
function contiguous(a::AbstractInterval, b::AbstractInterval)
left = max(LeftEndpoint(a), LeftEndpoint(b))
right = min(RightEndpoint(a), RightEndpoint(b))
return right.endpoint == left.endpoint && left.included != right.included
end
function Base.intersect(a::AbstractInterval{T}, b::AbstractInterval{T}) where T
!overlaps(a,b) && return Interval{T}()
left = max(LeftEndpoint(a), LeftEndpoint(b))
right = min(RightEndpoint(a), RightEndpoint(b))
return Interval{T}(left.endpoint, right.endpoint, left.included, right.included)
end
# There is power in a union.
"""
union(intervals::AbstractVector{<:AbstractInterval})
Flattens a vector of overlapping intervals into a new, smaller vector containing only
non-overlapping intervals.
"""
function Base.union(intervals::AbstractVector{<:AbstractInterval})
return union!(convert(Vector{AbstractInterval}, intervals))
end
"""
union!(intervals::AbstractVector{<:Union{Interval, AbstractInterval}})
Flattens a vector of overlapping intervals in-place to be a smaller vector containing only
non-overlapping intervals.
"""
function Base.union!(intervals::Union{AbstractVector{<:Interval}, AbstractVector{AbstractInterval}})
sort!(intervals)
i = 2
n = length(intervals)
while i <= n
prev = intervals[i - 1]
curr = intervals[i]
# If the current and previous intervals don't meet then move along
if !overlaps(prev, curr) && !contiguous(prev, curr)
i = i + 1
# If the two intervals meet then we absorb the current interval into
# the previous one.
else
intervals[i - 1] = merge(prev, curr)
deleteat!(intervals, i)
n -= 1
end
end
return intervals
end
function Base.merge(a::AbstractInterval, b::AbstractInterval)
if !overlaps(a, b) && !contiguous(a, b)
throw(ArgumentError("$a and $b are neither overlapping or contiguous."))
end
left = min(LeftEndpoint(a), LeftEndpoint(b))
right = max(RightEndpoint(a), RightEndpoint(b))
return Interval(
left.endpoint,
right.endpoint,
Inclusivity(left.included, right.included)
)
end
##### TIME ZONES #####
function astimezone(i::Interval{ZonedDateTime}, tz::TimeZone)
return Interval(astimezone(first(i), tz), astimezone(last(i), tz), inclusivity(i))
end