|
| 1 | +from dataclasses import dataclass, field |
| 2 | +from typing import List, Dict, Any, Optional, Tuple, Union |
| 3 | +import sqlite3 |
| 4 | +import json |
| 5 | +import numpy as np |
| 6 | +import pandas as pd |
| 7 | +from matchms import Spectrum |
| 8 | +from ms2deepscore.models import load_model |
| 9 | +from ms2deepscore import compute_embedding_array |
| 10 | +import faiss |
| 11 | + |
| 12 | +from .spectra_merging import ensure_merged_tables # schema with precursor_mz + metadata fields |
| 13 | +from .database_utils import blob_to_ndarray, ndarray_to_blob |
| 14 | + |
| 15 | + |
| 16 | +@dataclass |
| 17 | +class ANNIndex: |
| 18 | + """ |
| 19 | + End-to-end manager for MS2DeepScore ANN indices backed by SQLite. |
| 20 | +
|
| 21 | + Responsibilities |
| 22 | + --------------- |
| 23 | + - Compute and persist MS2DeepScore embeddings for rows in `merged_spectra` |
| 24 | + into `merged_embeddings`. |
| 25 | + - Build a FAISS index whose IDs are `merged_id`. |
| 26 | + - Query the index and resolve results to rich metadata (and optionally peaks/sources). |
| 27 | +
|
| 28 | + Attributes |
| 29 | + ---------- |
| 30 | + conn : sqlite3.Connection |
| 31 | + Connection to the same SQLite DB that contains `merged_spectra` and `merged_embeddings`. |
| 32 | + model_file_name : str |
| 33 | + Path to the MS2DeepScore .pt model. |
| 34 | + faiss_metric: |
| 35 | + Metric the index was built with. If "ip" and `normalize_query=True`, we L2-normalize |
| 36 | + query embeddings (cosine-like behavior). |
| 37 | + faiss_factory: |
| 38 | + Select available faiss factory ( e.g. "IVF4096,Flat", "HNSW32", ...see faiss documentation). |
| 39 | + normalize_embeddings: |
| 40 | + Normalize stored vectors for IP to behave cosine-like. Default is True. |
| 41 | + _model: |
| 42 | + MS2DeepScore model. |
| 43 | + _index: |
| 44 | + ANN index. |
| 45 | + |
| 46 | + Notes |
| 47 | + ----- |
| 48 | + - This class is intentionally state-light, it holds a `sqlite3.Connection`, a FAISS index, |
| 49 | + and a lazily-loaded MS2DeepScore model. |
| 50 | + """ |
| 51 | + conn: sqlite3.Connection |
| 52 | + model_path: str |
| 53 | + faiss_metric: str = "ip" |
| 54 | + faiss_factory: Optional[str] = None |
| 55 | + normalize_embeddings: bool = True |
| 56 | + _model: Any = field(default=None, init=False, repr=False) |
| 57 | + _index: Optional[faiss.Index] = field(default=None, init=False, repr=False) |
| 58 | + |
| 59 | + # ---------- lifecycle ---------- |
| 60 | + def ensure_schema(self) -> None: |
| 61 | + """Create (if absent) the merged tables with the richer schema.""" |
| 62 | + ensure_merged_tables(self.conn) |
| 63 | + |
| 64 | + def load_model(self): |
| 65 | + """Lazy-load MS2DeepScore model.""" |
| 66 | + if self._model is None: |
| 67 | + self._model = load_model(self.model_path) |
| 68 | + return self._model |
| 69 | + |
| 70 | + # ---------- step 2a: embeddings ---------- |
| 71 | + def compute_embeddings_to_sqlite( |
| 72 | + self, |
| 73 | + *, |
| 74 | + batch_rows: int = 1024, |
| 75 | + only_missing: bool = True, |
| 76 | + commit_every: int = 0, |
| 77 | + ) -> int: |
| 78 | + """ |
| 79 | + Compute MS2DeepScore embeddings for `merged_spectra` and write to `merged_embeddings`. |
| 80 | +
|
| 81 | + Parameters |
| 82 | + ---------- |
| 83 | + batch_rows : int |
| 84 | + Number of DB rows to embed at once. |
| 85 | + only_missing : bool |
| 86 | + If True, only embed rows not already in `merged_embeddings`. |
| 87 | + commit_every : int |
| 88 | + Forces a commit after this many merged_ids. 0 means commit only per batch. |
| 89 | +
|
| 90 | + Returns |
| 91 | + ------- |
| 92 | + int |
| 93 | + Number of embeddings inserted/updated. |
| 94 | + """ |
| 95 | + self.ensure_schema() |
| 96 | + cur = self.conn.cursor() |
| 97 | + cur.execute("PRAGMA foreign_keys = ON;") |
| 98 | + |
| 99 | + if only_missing: |
| 100 | + query = """ |
| 101 | + SELECT s.merged_id, s.mz, s.intensities, s.precursor_mz, s.ionmode, s.charge |
| 102 | + FROM merged_spectra s |
| 103 | + LEFT JOIN merged_embeddings e ON s.merged_id = e.merged_id |
| 104 | + WHERE e.merged_id IS NULL |
| 105 | + ORDER BY s.merged_id ASC; |
| 106 | + """ |
| 107 | + else: |
| 108 | + query = """ |
| 109 | + SELECT merged_id, mz, intensities, precursor_mz, ionmode, charge |
| 110 | + FROM merged_spectra |
| 111 | + ORDER BY merged_id ASC; |
| 112 | + """ |
| 113 | + cur.execute(query) |
| 114 | + |
| 115 | + model = self.load_model() |
| 116 | + |
| 117 | + inserted = 0 |
| 118 | + buf: List[Tuple[int, bytes, bytes, float, str, Optional[int]]] = [] |
| 119 | + done_since_commit = 0 |
| 120 | + |
| 121 | + def flush(batch: List[Tuple]) -> int: |
| 122 | + if not batch: |
| 123 | + return 0 |
| 124 | + specs: List[Spectrum] = [] |
| 125 | + mids: List[int] = [] |
| 126 | + for mid, mz_blob, it_blob, prec_mz, ionmode, charge in batch: |
| 127 | + mz = blob_to_ndarray(mz_blob).astype(np.float32, copy=False) |
| 128 | + it = blob_to_ndarray(it_blob).astype(np.float32, copy=False) |
| 129 | + specs.append(Spectrum(mz=mz, intensities=it, metadata={ |
| 130 | + "precursor_mz": float(prec_mz), |
| 131 | + "ionmode": ionmode, |
| 132 | + "charge": charge, |
| 133 | + })) |
| 134 | + mids.append(mid) |
| 135 | + |
| 136 | + emb = compute_embedding_array(model, specs).astype(np.float32, copy=False) |
| 137 | + q = "INSERT OR REPLACE INTO merged_embeddings (merged_id, embedding) VALUES (?, ?);" |
| 138 | + with self.conn: |
| 139 | + for mid, vec in zip(mids, emb): |
| 140 | + self.conn.execute(q, (mid, sqlite3.Binary(ndarray_to_blob(vec)))) |
| 141 | + return len(batch) |
| 142 | + |
| 143 | + while True: |
| 144 | + rows = cur.fetchmany(batch_rows) |
| 145 | + if not rows: |
| 146 | + break |
| 147 | + buf.extend(rows) |
| 148 | + # process buffer in batch_rows-sized chunks |
| 149 | + while len(buf) >= batch_rows: |
| 150 | + inserted += flush(buf[:batch_rows]) |
| 151 | + buf = buf[batch_rows:] |
| 152 | + done_since_commit += batch_rows |
| 153 | + if commit_every and done_since_commit >= commit_every: |
| 154 | + self.conn.commit() |
| 155 | + done_since_commit = 0 |
| 156 | + |
| 157 | + inserted += flush(buf) |
| 158 | + return inserted |
| 159 | + |
| 160 | + # ---------- step 2b: build faiss ---------- |
| 161 | + def build_index(self, *, index_path: Optional[str] = None) -> faiss.Index: |
| 162 | + """ |
| 163 | + Build a FAISS index from `merged_embeddings`. Uses IndexIDMap2 (ids=merged_id). |
| 164 | + Optionally saves to disk. |
| 165 | +
|
| 166 | + Returns |
| 167 | + ------- |
| 168 | + faiss.Index |
| 169 | + """ |
| 170 | + cur = self.conn.cursor() |
| 171 | + cur.execute("SELECT merged_id, embedding FROM merged_embeddings ORDER BY merged_id ASC;") |
| 172 | + |
| 173 | + first = cur.fetchone() |
| 174 | + if not first: |
| 175 | + raise ValueError("No embeddings present in 'merged_embeddings'.") |
| 176 | + first_id, first_blob = first |
| 177 | + first_vec = blob_to_ndarray(first_blob).astype(np.float32, copy=False) |
| 178 | + d = int(first_vec.shape[-1]) |
| 179 | + |
| 180 | + metric = faiss.METRIC_INNER_PRODUCT if self.faiss_metric.lower() == "ip" else faiss.METRIC_L2 |
| 181 | + base = (faiss.index_factory(d, self.faiss_factory, metric) |
| 182 | + if self.faiss_factory else |
| 183 | + (faiss.IndexFlatIP(d) if metric == faiss.METRIC_INNER_PRODUCT else faiss.IndexFlatL2(d))) |
| 184 | + index = faiss.IndexIDMap2(base) |
| 185 | + |
| 186 | + # add first vector |
| 187 | + X = first_vec[None, :] |
| 188 | + if self.faiss_metric.lower() == "ip" and self.normalize_embeddings: |
| 189 | + faiss.normalize_L2(X) |
| 190 | + index.add_with_ids(X, np.array([first_id], dtype=np.int64)) |
| 191 | + |
| 192 | + # stream the rest |
| 193 | + BATCH = 8192 |
| 194 | + ids_buf, vec_buf = [], [] |
| 195 | + while True: |
| 196 | + rows = cur.fetchmany(BATCH) |
| 197 | + if not rows: |
| 198 | + break |
| 199 | + for mid, blob in rows: |
| 200 | + ids_buf.append(mid) |
| 201 | + vec_buf.append(blob_to_ndarray(blob)) |
| 202 | + if ids_buf: |
| 203 | + Xb = np.vstack(vec_buf).astype(np.float32, copy=False) |
| 204 | + if self.faiss_metric.lower() == "ip" and self.normalize_embeddings: |
| 205 | + faiss.normalize_L2(Xb) |
| 206 | + index.add_with_ids(Xb, np.asarray(ids_buf, dtype=np.int64)) |
| 207 | + ids_buf.clear() |
| 208 | + vec_buf.clear() |
| 209 | + |
| 210 | + if index_path: |
| 211 | + faiss.write_index(index, index_path) |
| 212 | + |
| 213 | + self._index = index |
| 214 | + return index |
| 215 | + |
| 216 | + def load_index(self, index_path: str) -> faiss.Index: |
| 217 | + """Load an existing FAISS index from disk.""" |
| 218 | + self._index = faiss.read_index(index_path) |
| 219 | + return self._index |
| 220 | + |
| 221 | + @property |
| 222 | + def index(self) -> faiss.Index: |
| 223 | + if self._index is None: |
| 224 | + raise RuntimeError("FAISS index not built/loaded. Call build_index() or load_index().") |
| 225 | + return self._index |
| 226 | + |
| 227 | + # ---------- querying ---------- |
| 228 | + def _fetch_merged_rows( |
| 229 | + self, |
| 230 | + ids: List[int], |
| 231 | + *, |
| 232 | + include_peaks: bool = False, |
| 233 | + ) -> Dict[int, Dict[str, Any]]: |
| 234 | + """Bulk-fetch rows from merged_spectra for a list of merged_id values.""" |
| 235 | + if not ids: |
| 236 | + return {} |
| 237 | + out: Dict[int, Dict[str, Any]] = {} |
| 238 | + CHUNK = 1000 |
| 239 | + q_base = ( |
| 240 | + "SELECT merged_id, comp_id, ionmode, charge, precursor_mz, " |
| 241 | + "smiles, inchikey, inchi, name, instrument_type, adduct, collision_energy, " |
| 242 | + "num_merged, source_spec_ids, mz, intensities " |
| 243 | + "FROM merged_spectra WHERE merged_id IN ({ph});" |
| 244 | + ) |
| 245 | + for i in range(0, len(ids), CHUNK): |
| 246 | + chunk = ids[i:i+CHUNK] |
| 247 | + q = q_base.format(ph=",".join("?" for _ in chunk)) |
| 248 | + rows = self.conn.execute(q, chunk).fetchall() |
| 249 | + for r in rows: |
| 250 | + (mid, comp_id, ionmode, charge, precursor_mz, smiles, inchikey, inchi, name, |
| 251 | + instrument_type, adduct, collision_energy, num_merged, source_spec_ids, |
| 252 | + mz_blob, intens_blob) = r |
| 253 | + row = { |
| 254 | + "merged_id": mid, "comp_id": comp_id, "ionmode": ionmode, "charge": charge, |
| 255 | + "precursor_mz": precursor_mz, "smiles": smiles, "inchikey": inchikey, |
| 256 | + "inchi": inchi, "name": name, "instrument_type": instrument_type, |
| 257 | + "adduct": adduct, "collision_energy": collision_energy, "num_merged": num_merged, |
| 258 | + "source_spec_ids": json.loads(source_spec_ids) if source_spec_ids else [], |
| 259 | + } |
| 260 | + if include_peaks: |
| 261 | + row["mz"] = blob_to_ndarray(mz_blob).astype(np.float32, copy=False) |
| 262 | + row["intensities"] = blob_to_ndarray(intens_blob).astype(np.float32, copy=False) |
| 263 | + out[mid] = row |
| 264 | + return out |
| 265 | + |
| 266 | + def query( |
| 267 | + self, |
| 268 | + queries: Union[Spectrum, List[Spectrum]], |
| 269 | + *, |
| 270 | + k: int = 10, |
| 271 | + include_metadata: bool = True, |
| 272 | + include_peaks: bool = False, |
| 273 | + include_sources: bool = False, |
| 274 | + sdb: Optional[Any] = None, |
| 275 | + as_dataframe: bool = True, |
| 276 | + ) -> Union[List[pd.DataFrame], List[List[Dict[str, Any]]]]: |
| 277 | + """ |
| 278 | + Embed query spectrum(ae), search FAISS, and resolve hits via SQLite. |
| 279 | +
|
| 280 | + Returns per-query results (DataFrame by default) with columns: |
| 281 | + ['rank','merged_id','score','distance', 'comp_id','name','ionmode','charge', |
| 282 | + 'precursor_mz','adduct','collision_energy','num_merged','source_spec_ids', ...] |
| 283 | + (plus 'merged_spectrum' / 'source_spectra' if requested). |
| 284 | +
|
| 285 | + Notes |
| 286 | + ----- |
| 287 | + - For `faiss_metric="ip"` with normalized vectors, 'score' is cosine-like. |
| 288 | + - For `faiss_metric="l2"`, 'score' is just `-distance` (so “higher is better”). |
| 289 | + """ |
| 290 | + if isinstance(queries, Spectrum): |
| 291 | + queries = [queries] |
| 292 | + |
| 293 | + model = self.load_model() |
| 294 | + Q = compute_embedding_array(model, queries).astype(np.float32, copy=False) |
| 295 | + |
| 296 | + if self.faiss_metric.lower() == "ip" and self.normalize_embeddings: |
| 297 | + faiss.normalize_L2(Q) |
| 298 | + |
| 299 | + distances, ids = self.index.search(Q, k) # (nq, k) |
| 300 | + nq = distances.shape[0] |
| 301 | + flat_ids = [int(x) for x in ids.flatten().tolist() if x != -1] |
| 302 | + |
| 303 | + rows_by_id: Dict[int, Dict[str, Any]] = {} |
| 304 | + if include_metadata or include_peaks or include_sources: |
| 305 | + rows_by_id = self._fetch_merged_rows(flat_ids, include_peaks=include_peaks) |
| 306 | + |
| 307 | + results_all: List[List[Dict[str, Any]]] = [] |
| 308 | + for qi in range(nq): |
| 309 | + one: List[Dict[str, Any]] = [] |
| 310 | + for rk in range(k): |
| 311 | + mid = int(ids[qi, rk]) |
| 312 | + if mid == -1: |
| 313 | + continue |
| 314 | + dist = float(distances[qi, rk]) |
| 315 | + score = dist if self.faiss_metric.lower() == "ip" else -dist |
| 316 | + item: Dict[str, Any] = {"rank": rk+1, "merged_id": mid, "score": score, "distance": dist} |
| 317 | + |
| 318 | + if include_metadata or include_peaks or include_sources: |
| 319 | + row = rows_by_id.get(mid) |
| 320 | + if row: |
| 321 | + item.update({k: v for k, v in row.items() if k not in ("mz", "intensities")}) |
| 322 | + if include_peaks: |
| 323 | + mz = row.get("mz") |
| 324 | + it = row.get("intensities") |
| 325 | + item["merged_spectrum"] = Spectrum(mz=mz, intensities=it, metadata={ |
| 326 | + "precursor_mz": row["precursor_mz"], |
| 327 | + "ionmode": row["ionmode"], |
| 328 | + "charge": row["charge"], |
| 329 | + "comp_id": row["comp_id"], |
| 330 | + "num_merged": row["num_merged"], |
| 331 | + "source_spec_ids": row["source_spec_ids"], |
| 332 | + "name": row.get("name"), |
| 333 | + "adduct": row.get("adduct"), |
| 334 | + }) if (mz is not None and it is not None) else None |
| 335 | + if include_sources: |
| 336 | + if sdb is None: |
| 337 | + raise ValueError("include_sources=True requires sdb.") |
| 338 | + item["source_spectra"] = sdb.get_spectra_by_ids(row.get("source_spec_ids", [])) |
| 339 | + else: |
| 340 | + # keep columns consistent |
| 341 | + if include_peaks: |
| 342 | + item["merged_spectrum"] = None |
| 343 | + if include_sources: |
| 344 | + item["source_spectra"] = [] |
| 345 | + |
| 346 | + one.append(item) |
| 347 | + results_all.append(one) |
| 348 | + |
| 349 | + if not as_dataframe: |
| 350 | + return results_all |
| 351 | + |
| 352 | + # convert to tidy DataFrames with a nice column order |
| 353 | + dfs: List[pd.DataFrame] = [] |
| 354 | + base_order = [ |
| 355 | + "rank", "merged_id", "score", "distance", "comp_id", "name", |
| 356 | + "ionmode", "charge", "precursor_mz", "adduct", "collision_energy", |
| 357 | + "num_merged", "source_spec_ids" |
| 358 | + ] |
| 359 | + for one in results_all: |
| 360 | + df = pd.DataFrame(one) |
| 361 | + # move known columns up front |
| 362 | + cols_front = [c for c in base_order if c in df.columns] |
| 363 | + cols_rest = [c for c in df.columns if c not in cols_front] |
| 364 | + df = df[cols_front + cols_rest] |
| 365 | + dfs.append(df) |
| 366 | + return dfs |
0 commit comments