|
1 | 1 | import os |
2 | 2 | import gensim |
3 | | -import pytest |
| 3 | +import numpy as np |
4 | 4 | from matchms import calculate_scores |
5 | 5 | from matchms.filtering import (add_losses, add_parent_mass, default_filters, |
6 | 6 | normalize_intensities, |
@@ -68,16 +68,18 @@ def apply_my_filters(s): |
68 | 68 | actual_top10 = sorted_by_score[:10] |
69 | 69 |
|
70 | 70 | expected_top10 = [ |
71 | | - (documents[19], documents[25], pytest.approx(0.9999121928249473, rel=1e-9)), |
72 | | - (documents[20], documents[25], pytest.approx(0.9998846890269892, rel=1e-9)), |
73 | | - (documents[20], documents[45], pytest.approx(0.9998756073673759, rel=1e-9)), |
74 | | - (documents[25], documents[45], pytest.approx(0.9998750427994474, rel=1e-9)), |
75 | | - (documents[19], documents[27], pytest.approx(0.9998722768460854, rel=1e-9)), |
76 | | - (documents[22], documents[27], pytest.approx(0.9998633023352553, rel=1e-9)), |
77 | | - (documents[18], documents[27], pytest.approx(0.9998616961532616, rel=1e-9)), |
78 | | - (documents[19], documents[45], pytest.approx(0.9998528723697396, rel=1e-9)), |
79 | | - (documents[14], documents[71], pytest.approx(0.9998404364805897, rel=1e-9)), |
80 | | - (documents[20], documents[27], pytest.approx(0.9998336807761137, rel=1e-9)) |
| 71 | + (documents[19], documents[25], 0.9999121928249473), |
| 72 | + (documents[20], documents[25], 0.9998846890269892), |
| 73 | + (documents[20], documents[45], 0.9998756073673759), |
| 74 | + (documents[25], documents[45], 0.9998750427994474), |
| 75 | + (documents[19], documents[27], 0.9998722768460854), |
| 76 | + (documents[22], documents[27], 0.9998633023352553), |
| 77 | + (documents[18], documents[27], 0.9998616961532616), |
| 78 | + (documents[19], documents[45], 0.9998528723697396), |
| 79 | + (documents[14], documents[71], 0.9998404364805897), |
| 80 | + (documents[20], documents[27], 0.9998336807761137) |
81 | 81 | ] |
82 | 82 |
|
83 | | - assert actual_top10 == expected_top10, "Expected different top 10 table." |
| 83 | + assert [x[0] for x in actual_top10] == [x[0] for x in expected_top10] |
| 84 | + assert [x[1] for x in actual_top10] == [x[1] for x in expected_top10] |
| 85 | + assert np.allclose([x[2][0] for x in actual_top10], [x[2] for x in expected_top10]), "Expected different top 10 table." |
0 commit comments