|
| 1 | +Adhesion |
| 2 | +-------- |
| 3 | +Adhesion simulates the sticking interaction between surfaces, such as glue bonding or material contact. |
| 4 | +Provides functionality to compute normal adhesion (perpendicular forces) and tangential adhesion (parallel forces). |
| 5 | + |
| 6 | +Normal Adhesion |
| 7 | +^^^^^^^^^^^^^^^ |
| 8 | + |
| 9 | +For a given distance :math:`d`: |
| 10 | + |
| 11 | +- If :math:`d < \hat{d}_p`: |
| 12 | + |
| 13 | + .. math:: |
| 14 | + A_n(d) = a_1 \cdot d^2 + c_1, \quad \text{where } a_1 = a_2 \left(1 - \frac{\hat{d}_a}{\hat{d}_p}\right) |
| 15 | +
|
| 16 | +- If :math:`\hat{d}_p \leq d < \hat{d}_a`: |
| 17 | + |
| 18 | + .. math:: |
| 19 | + A_n(d) = (a_2 \cdot d + b_2) \cdot d + c_2, \quad \text{where } b_2 = -2 a_2 \hat{d}_a, \, c_2 = a_2 \hat{d}_a^2 |
| 20 | +
|
| 21 | +- If :math:`d \geq \hat{d}_a`: |
| 22 | + |
| 23 | + .. math:: |
| 24 | + A_n(d) = 0 |
| 25 | +
|
| 26 | +The normal adhesion potential models the attraction force based on the distance between two surfaces. |
| 27 | + |
| 28 | +Here dhat_p (:math:\hat{d}_p) is the threshold distance for adhesion (in units of distance) where the largest adhesion force is applied. |
| 29 | +Here dhat_a (:math:\hat{d}_a) is the adhesion activation distance (in units of distance), representing the maximum range where adhesion forces are active. |
| 30 | +Here Y (:math:Y) is the adhesion stiffness (in units of stress, such as Young's modulus), controlling the intensity of adhesion forces. |
| 31 | +Here eps_c (:math:\epsilon_c) is the adhesion coefficient (unitless) that defines the critical strain at which adhesion forces decrease. |
| 32 | + |
| 33 | +.. md-tab-set:: |
| 34 | + |
| 35 | + .. md-tab-item:: C++ |
| 36 | + |
| 37 | + .. code-block:: c++ |
| 38 | + |
| 39 | + const double dhat_p = 1e-3; |
| 40 | + const double dhat_a = 2 * dhat_p; |
| 41 | + const double Y = 1e3; |
| 42 | + const double eps_c = 0.5; |
| 43 | + |
| 44 | + const NormalAdhesionPotential A(dhat_p, dhat_a, Y, eps_c) |
| 45 | + double adhesion_potential = A(normal_collisions, collision_mesh, displacement); |
| 46 | + |
| 47 | + .. md-tab-item:: Python |
| 48 | + |
| 49 | + .. code-block:: python |
| 50 | +
|
| 51 | + dhat_p = 1e-3 |
| 52 | + dhat_a = 2 * dhat_p |
| 53 | + Y = 1e3 |
| 54 | + eps_c = 0.5 |
| 55 | +
|
| 56 | + A = NormalAdhesionPotential(dhat_p, dhat_a, Y, eps_c) |
| 57 | + adhesion_potential = A(normal_collisions, collision_mesh, displacement) |
| 58 | +
|
| 59 | +Normal Derivatives |
| 60 | +^^^^^^^^^^^ |
| 61 | + |
| 62 | +We can also compute the first and second derivatives of the normal adhesion potential with respect to the displacement. |
| 63 | + |
| 64 | +.. md-tab-set:: |
| 65 | + |
| 66 | + .. md-tab-item:: C++ |
| 67 | + |
| 68 | + .. code-block:: c++ |
| 69 | + |
| 70 | + Eigen::VectorXd adhesion_potential_grad = |
| 71 | + A.gradient(normal_collisions, collision_mesh, displacement); |
| 72 | + |
| 73 | + Eigen::SparseMatrix<double> adhesion_potential_hess = |
| 74 | + A.hessian(normal_collisions, collision_mesh, displacement); |
| 75 | + |
| 76 | + .. md-tab-item:: Python |
| 77 | + |
| 78 | + .. code-block:: python |
| 79 | +
|
| 80 | + adhesion_potential_grad = A.gradient( |
| 81 | + normal_collisions, collision_mesh, displacement) |
| 82 | +
|
| 83 | + adhesion_potential_hess = A.hessian( |
| 84 | + normal_collisions, collision_mesh, displacement) |
| 85 | +
|
| 86 | +Tangential Adhesion |
| 87 | +^^^^^^^^^^^^^^^ |
| 88 | + |
| 89 | +The tangential adhesion potential models resistance to sliding (parallel to surfaces). |
| 90 | + |
| 91 | +For displacement :math:`x`: |
| 92 | + |
| 93 | +- If :math:`0 \leq x < 2 \varepsilon_a`: |
| 94 | + |
| 95 | + .. math:: |
| 96 | + A_t(x) = \frac{x^2}{\varepsilon_a} \left(1 - \frac{y}{3 \varepsilon_a}\right) |
| 97 | +
|
| 98 | +- If :math:`x \geq 2 \varepsilon_a`: |
| 99 | + |
| 100 | + .. math:: |
| 101 | + A_t(x) = \frac{4 \varepsilon_a}{3} |
| 102 | +
|
| 103 | +Here ``eps_a`` (:math:`\epsilon_a`) is the adhesion threshold (in units of displacement) used to smoothly transition. |
| 104 | + |
| 105 | +.. md-tab-set:: |
| 106 | + |
| 107 | + .. md-tab-item:: C++ |
| 108 | + |
| 109 | + .. code-block:: c++ |
| 110 | + |
| 111 | + const double eps_a = 0.01; |
| 112 | + const TangentialAdhesionPotential A(eps_a); |
| 113 | + double adhesion_potential = A(tangential_collisions, collision_mesh, displacement); |
| 114 | + |
| 115 | + .. md-tab-item:: Python |
| 116 | + |
| 117 | + .. code-block:: python |
| 118 | +
|
| 119 | + eps_a = 0.01 |
| 120 | + A = TangentialAdhesionPotential(eps_a) |
| 121 | + adhesion_potential = A(tangential_collisions, collision_mesh, displacement); |
| 122 | +
|
| 123 | +Derivatives |
| 124 | +^^^^^^^^^^^ |
| 125 | + |
| 126 | +We can also compute the first and second derivatives of the tangential adhesion potential with respect to the displacement. |
| 127 | + |
| 128 | +.. md-tab-set:: |
| 129 | + |
| 130 | + .. md-tab-item:: C++ |
| 131 | + |
| 132 | + .. code-block:: c++ |
| 133 | + |
| 134 | + Eigen::VectorXd adhesion_potential_grad = |
| 135 | + A.gradient(tangential_collisions, collision_mesh, displacement); |
| 136 | + |
| 137 | + Eigen::SparseMatrix<double> adhesion_potential_hess = |
| 138 | + A.hessian(tangential_collisions, collision_mesh, displacement); |
| 139 | + |
| 140 | + .. md-tab-item:: Python |
| 141 | + |
| 142 | + .. code-block:: python |
| 143 | +
|
| 144 | + adhesion_potential_grad = A.gradient( |
| 145 | + tangential_collisions, collision_mesh, displacement) |
| 146 | +
|
| 147 | + adhesion_potential_hess = A.hessian( |
| 148 | + tangential_collisions, collision_mesh, displacement) |
0 commit comments