-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
This issue summarizes experiments related to Dataset601_DCMlesions (region-based model trained to using a single input channel (T2w_ax) to segment both SC and lesions).
dataset.json:
"channel_names": {
"0": "acq-ax_T2w"
},
"labels": {
"background": 0,
"sc": [
1,
2
],
"lesion": 2
},
"regions_class_order": [
1,
2
],nnUNetPlans.json:
{
"dataset_name": "Dataset601_DCMlesions",
"plans_name": "nnUNetPlans",
"original_median_spacing_after_transp": [
3.5999999046325684,
0.5,
0.5
],
"original_median_shape_after_transp": [
15,
320,
319
],
"image_reader_writer": "SimpleITKIO",
"transpose_forward": [
0,
1,
2
],
"transpose_backward": [
0,
1,
2
],
"configurations": {
"2d": {
"data_identifier": "nnUNetPlans_2d",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 31,
"patch_size": [
320,
320
],
"median_image_size_in_voxels": [
320.0,
319.0
],
"spacing": [
0.5,
0.5
],
"normalization_schemes": [
"ZScoreNormalization"
],
"use_mask_for_norm": [
false
],
"UNet_class_name": "PlainConvUNet",
"UNet_base_num_features": 32,
"n_conv_per_stage_encoder": [
2,
2,
2,
2,
2,
2,
2
],
"n_conv_per_stage_decoder": [
2,
2,
2,
2,
2,
2
],
"num_pool_per_axis": [
6,
6
],
"pool_op_kernel_sizes": [
[
1,
1
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
],
[
2,
2
]
],
"conv_kernel_sizes": [
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
],
[
3,
3
]
],
"unet_max_num_features": 512,
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_seg_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {
"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"batch_dice": true
},
"3d_fullres": {
"data_identifier": "nnUNetPlans_3d_fullres",
"preprocessor_name": "DefaultPreprocessor",
"batch_size": 2,
"patch_size": [
16,
320,
320
],
"median_image_size_in_voxels": [
15.0,
320.0,
319.0
],
"spacing": [
3.5999979972839355,
0.5,
0.5
],
"normalization_schemes": [
"ZScoreNormalization"
],
"use_mask_for_norm": [
false
],
"UNet_class_name": "PlainConvUNet",
"UNet_base_num_features": 32,
"n_conv_per_stage_encoder": [
2,
2,
2,
2,
2,
2,
2
],
"n_conv_per_stage_decoder": [
2,
2,
2,
2,
2,
2
],
"num_pool_per_axis": [
2,
6,
6
],
"pool_op_kernel_sizes": [
[
1,
1,
1
],
[
1,
2,
2
],
[
1,
2,
2
],
[
2,
2,
2
],
[
2,
2,
2
],
[
1,
2,
2
],
[
1,
2,
2
]
],
"conv_kernel_sizes": [
[
1,
3,
3
],
[
1,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
],
[
3,
3,
3
]
],
"unet_max_num_features": 320,
"resampling_fn_data": "resample_data_or_seg_to_shape",
"resampling_fn_seg": "resample_data_or_seg_to_shape",
"resampling_fn_data_kwargs": {
"is_seg": false,
"order": 3,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_seg_kwargs": {
"is_seg": true,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"resampling_fn_probabilities": "resample_data_or_seg_to_shape",
"resampling_fn_probabilities_kwargs": {
"is_seg": false,
"order": 1,
"order_z": 0,
"force_separate_z": null
},
"batch_dice": false
}
},
"experiment_planner_used": "ExperimentPlanner",
"label_manager": "LabelManager",
"foreground_intensity_properties_per_channel": {
"0": {
"max": 2102.0,
"mean": 312.2383728027344,
"median": 304.0,
"min": 0.0,
"percentile_00_5": 100.0,
"percentile_99_5": 654.0,
"std": 92.65310668945312
}
}
}Dataset601_DCMlesions will be trained on dcm-zurich-lesions and dcm-zurich-lesions-20231115 datasets using nnUNetv2 region-based approach (i.e., segmenting both SC and lesions).
Manual lesion GTs are available for both datasets.
TODO
- create SC seg GT for
dcm-zurich-lesions-20231115- run inference using the SCIseg model using segment_sc.sh - done; SCIseg worked relatively well -- only 5 of 38 SC segs needed slight manual corrections. Labels are now pushed - double-check if there is an overlap in subjects between both datasets (should not be the case) - no overlap, see comment below
- convert both datasets from BIDS to nnUNet using dataset_conversion/convert_bids_to_nnUNetv2_region-based.py
- make sure lesions are part of SC (
sct_maths -add) - not needed; see here - run training
Metadata
Metadata
Assignees
Labels
No labels