Skip to content

Try ensembling/bagging for prediction #63

@jcohenadad

Description

@jcohenadad

Concept

Training several models in production (split 80/20/0) with different seeds, the idea is to average all predictions to generate a more reliable soft prediction (ie: bagging ensemble).

Prototyping script
# Loop across multiple subjects
list_sub=(001 002 003 004 005)
for sub in ${list_sub[@]}; do
  # Crop input image
  sct_deepseg_sc -i ~/data.neuro/basel-mp2rage/sub-P${sub}/anat/sub-P${sub}_UNIT1.nii.gz -c t1 
  sct_maths -i sub-P${sub}_UNIT1_seg.nii.gz -dilate 5 -shape ball -o sub-P${sub}_UNIT1_seg_dilate.nii.gz
  sct_maths -i sub-P${sub}_UNIT1_seg_dilate.nii.gz -dilate 32 -dim 1 -shape disk -o sub-P${sub}_UNIT1_seg_dilate.nii.gz
  sct_crop_image -i /Users/julien/data.neuro/basel-mp2rage/sub-P${sub}/anat/sub-P${sub}_UNIT1.nii.gz -m sub-P${sub}_UNIT1_seg_dilate.nii.gz -o sub-P${sub}_UNIT1_crop.nii.gz
  # Loop across models and run prediction
  list_seed=(7 8 9 10 11)
  for seed in ${list_seed[@]}; do ivadomed_segment_image -i sub-P${sub}_UNIT1_crop.nii.gz -m models/seed${seed}/model_seg_lesion_mp2rage -s _pred${seed}; done
  # Average
  sct_image -i sub-P${sub}_UNIT1_crop_pred*.nii.gz -concat t -o sub-P${sub}_UNIT1_crop_predMean.nii.gz
  sct_maths -i sub-P${sub}_UNIT1_crop_predMean.nii.gz -mean t -o sub-P${sub}_UNIT1_crop_predMean.nii.gz
  # Display
  fsleyes -S ~/data.neuro/basel-mp2rage/sub-P${sub}/anat/sub-P${sub}_UNIT1.nii.gz sub-P${sub}_UNIT1_crop_predMean.nii.gz -cm red-yellow
done

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions