-
Notifications
You must be signed in to change notification settings - Fork 0
Description
Description
Comparison of seg_ms_lesion_mp2rage
and UNIseg
, models for segment MS lesions on MP2RAGE images (UNIT1
contrast)
- Experiments performed using SCT v6.3
- To test both models, SC masks were generated using contrast-agnostic-softseg-spinalcord, then a cropping around the SC. Preprocessing pipeline for training and testing based on Try ensembling/bagging for prediction #63 (comment)
Preprocessing pipeline
subjects=( sub-P002 sub-P016 sub-P021 sub-P037...)
bids_basel_input="basel-mp2rage"
for subject in "${subjects[@]}"
do
# Set orient image and lesions mask to RPI
sct_image -i $bids_basel_input/$subject/anat/$subject"_UNIT1.nii.gz" -setorient RPI
# Generate SC with contrast agnostic model
sct_deepseg -i $bids_basel_input/$subject/anat/$subject"_UNIT1.nii.gz" -task seg_sc_contrast_agnostic -o $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_contrast-agnostic-SC_seg.nii.gz"
# Cropping with dilation (around the SC with 30 pixels in axial plane and 5 pixels in Z)
sct_crop_image -i $bids_basel_input/$subject/anat/$subject"_UNIT1.nii.gz" -m $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_contrast-agnostic-SC_seg.nii.gz" -o $bids_basel_input/$subject/anat/$subject"_UNIT1_crop.nii.gz" -dilate 30x30x5
# MS lesion segmentation using seg_ms_lesion_mp2rage
sct_deepseg -i $bids_basel_input/$subject/anat/$subject"_UNIT1.nii.gz" -task seg_ms_lesion_mp2rage -o $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_crop_ivadomed_bin.nii.gz"
# Binarizing seg_ms_lesion_mp2rage soft seg
sct_maths -i $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_crop_ivadomed_seg.nii.gz" -bin 0.5 -o $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_crop_ivadomed_bin.nii.gz"
# MS lesion segmentation using UNIseg
sct_deepseg -i $bids_basel_input/$subject/anat/$subject"_UNIT1.nii.gz" -task UNIseg -o $bids_basel_input/derivatives/labels/$subject/anat/$subject"_UNIT1_UNIseg.nii.gz"
done
Models
-
seg_ms_lesion_mp2rage (ivadomed)
Current benchmark for segmenting MS lesions MP2RAGE. It was trained with ivadomed framework, usingbasel-mp2rage
dataset, with a ensembling/bagging approaches. The soft segmentation will be binarized with a threshold of 0.5.
It is implemented onsct_deepseg
-taskseg_ms_lesion_mp2rage
-
UNIseg
Model trained with 3D nnUNetv2 framework, usingbasel-mp2rage
,nih-ms-mp2rage
andmarseille-3t-mp2rage
datasets.
The best fold is locally implemented onsct_deepseg
-taskUNIseg
Details
Fig.01
Learning curves of the best fold of UNIseg training
Fig.02
Comparison of the Dice Score in few test subjects from different centers.
Fig.03
Comparison of the average inference time (seconds) of each model at different centers. Processing using a CPU (Intel(R) Core(TM) i3-1005G1 CPU @ 1.20GHz).
QC
Here the QC for test subjects (Fig.02)
Legend
- GT_lesion.nii.gz -> GT
- ivadomed_bin.nii.gz -> prediction of
seg_ms_lesion_mp2rage
with binarization at 0.5 - UNIseg.nii.gz -> prediction of UNIseg
Since UNIseg
performs the same task on the same image modality, but with a higher performance (although a bit slower), we should replace seg_ms_lesion_mp2rage
by UNIseg
? creating a release?