Skip to content

YoloX implementation #39

@mapo80

Description

@mapo80

Hi,

this is a great library.
I need to implement inference for YoloX model but I'm having some trouble.

This is python script that I use:

import os
import cv2
import numpy as np
import onnxruntime
import os
import cv2
import numpy as np
import onnxruntime

# Constants
INPUT_SHAPE = (640, 640)  # Adjust this if needed
NMS_THRESHOLD = 0.45
SCORE_THRESHOLD = 0.4

# Replace COCO_CLASSES with your class names
CLASS_NAMES = []

_COLORS = np.array(
    [
        0.000, 0.447, 0.741,
        0.850, 0.325, 0.098,
        0.929, 0.694, 0.125,
        0.494, 0.184, 0.556,
        0.466, 0.674, 0.188,
        0.301, 0.745, 0.933,
        0.635, 0.078, 0.184,
        0.300, 0.300, 0.300,
        0.600, 0.600, 0.600,
        1.000, 0.000, 0.000,
        1.000, 0.500, 0.000,
        0.749, 0.749, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 1.000,
        0.667, 0.000, 1.000,
        0.333, 0.333, 0.000,
        0.333, 0.667, 0.000,
        0.333, 1.000, 0.000,
        0.667, 0.333, 0.000,
        0.667, 0.667, 0.000,
        0.667, 1.000, 0.000,
        1.000, 0.333, 0.000,
        1.000, 0.667, 0.000,
        1.000, 1.000, 0.000,
        0.000, 0.333, 0.500,
        0.000, 0.667, 0.500,
        0.000, 1.000, 0.500,
        0.333, 0.000, 0.500,
        0.333, 0.333, 0.500,
        0.333, 0.667, 0.500,
        0.333, 1.000, 0.500,
        0.667, 0.000, 0.500,
        0.667, 0.333, 0.500,
        0.667, 0.667, 0.500,
        0.667, 1.000, 0.500,
        1.000, 0.000, 0.500,
        1.000, 0.333, 0.500,
        1.000, 0.667, 0.500,
        1.000, 1.000, 0.500,
        0.000, 0.333, 1.000,
        0.000, 0.667, 1.000,
        0.000, 1.000, 1.000,
        0.333, 0.000, 1.000,
        0.333, 0.333, 1.000,
        0.333, 0.667, 1.000,
        0.333, 1.000, 1.000,
        0.667, 0.000, 1.000,
        0.667, 0.333, 1.000,
        0.667, 0.667, 1.000,
        0.667, 1.000, 1.000,
        1.000, 0.000, 1.000,
        1.000, 0.333, 1.000,
        1.000, 0.667, 1.000,
        0.333, 0.000, 0.000,
        0.500, 0.000, 0.000,
        0.667, 0.000, 0.000,
        0.833, 0.000, 0.000,
        1.000, 0.000, 0.000,
        0.000, 0.167, 0.000,
        0.000, 0.333, 0.000,
        0.000, 0.500, 0.000,
        0.000, 0.667, 0.000,
        0.000, 0.833, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 0.167,
        0.000, 0.000, 0.333,
        0.000, 0.000, 0.500,
        0.000, 0.000, 0.667,
        0.000, 0.000, 0.833,
        0.000, 0.000, 1.000,
        0.000, 0.000, 0.000,
        0.143, 0.143, 0.143,
        0.286, 0.286, 0.286,
        0.429, 0.429, 0.429,
        0.571, 0.571, 0.571,
        0.714, 0.714, 0.714,
        0.857, 0.857, 0.857,
        0.000, 0.447, 0.741,
        0.314, 0.717, 0.741,
        0.50, 0.5, 0
    ]
).astype(np.float32).reshape(-1, 3)

def preprocess(img, input_size, swap=(2, 0, 1)):
    if len(img.shape) == 3:
        padded_img = np.ones((input_size[0], input_size[1], 3), dtype=np.uint8) * 114
    else:
        padded_img = np.ones(input_size, dtype=np.uint8) * 114

    r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
    resized_img = cv2.resize(
        img,
        (int(img.shape[1] * r), int(img.shape[0] * r)),
        interpolation=cv2.INTER_LINEAR,
    ).astype(np.uint8)
    padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img

    padded_img = padded_img.transpose(swap)
    padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
    return padded_img, r

def demo_postprocess(outputs, img_size, p6=False):
    grids = []
    expanded_strides = []
    strides = [8, 16, 32] if not p6 else [8, 16, 32, 64]

    hsizes = [img_size[0] // stride for stride in strides]
    wsizes = [img_size[1] // stride for stride in strides]

    for hsize, wsize, stride in zip(hsizes, wsizes, strides):
        xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
        grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
        grids.append(grid)
        shape = grid.shape[:2]
        expanded_strides.append(np.full((*shape, 1), stride))

    grids = np.concatenate(grids, 1)
    expanded_strides = np.concatenate(expanded_strides, 1)
    outputs[..., :2] = (outputs[..., :2] + grids) * expanded_strides
    outputs[..., 2:4] = np.exp(outputs[..., 2:4]) * expanded_strides

    return outputs

def nms(boxes, scores, nms_thr):
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]

    areas = (x2 - x1 + 1) * (y2 - y1 + 1)
    order = scores.argsort()[::-1]

    keep = []
    while order.size > 0:
        i = order[0]
        keep.append(i)
        xx1 = np.maximum(x1[i], x1[order[1:]])
        yy1 = np.maximum(y1[i], y1[order[1:]])
        xx2 = np.minimum(x2[i], x2[order[1:]])
        yy2 = np.minimum(y2[i], y2[order[1:]])

        w = np.maximum(0.0, xx2 - xx1 + 1)
        h = np.maximum(0.0, yy2 - yy1 + 1)
        inter = w * h
        ovr = inter / (areas[i] + areas[order[1:]] - inter)

        inds = np.where(ovr <= nms_thr)[0]
        order = order[inds + 1]

    return keep

def multiclass_nms(boxes, scores, nms_thr, score_thr, class_agnostic=True):
    if class_agnostic:
        return multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr)
    # else:
    #     return multiclass_nms_class_aware(boxes, scores, nms_thr, score_thr)

def multiclass_nms_class_agnostic(boxes, scores, nms_thr, score_thr):
    cls_inds = scores.argmax(1)
    cls_scores = scores[np.arange(len(cls_inds)), cls_inds]

    valid_score_mask = cls_scores > score_thr
    if valid_score_mask.sum() == 0:
        return None
    valid_scores = cls_scores[valid_score_mask]
    valid_boxes = boxes[valid_score_mask]
    valid_cls_inds = cls_inds[valid_score_mask]
    keep = nms(valid_boxes, valid_scores, nms_thr)
    if keep:
        return np.concatenate(
            [valid_boxes[keep], valid_scores[keep, None], valid_cls_inds[keep, None]], 1
        )
    return None

def vis(img, boxes, scores, cls_ids, conf=0.5, class_names=None):
    for i in range(len(boxes)):
        box = boxes[i]
        cls_id = int(cls_ids[i])
        score = scores[i]
        if score < conf:
            continue
        x0 = int(box[0])
        y0 = int(box[1])
        x1 = int(box[2])
        y1 = int(box[3])

        color = (_COLORS[cls_id] * 255).astype(np.uint8).tolist()
        text = '{}:{:.1f}%'.format(class_names[cls_id], score * 100)
        txt_color = (0, 0, 0) if np.mean(_COLORS[cls_id]) > 0.5 else (255, 255, 255)
        font = cv2.FONT_HERSHEY_SIMPLEX

        txt_size = cv2.getTextSize(text, font, 0.4, 1)[0]
        cv2.rectangle(img, (x0, y0), (x1, y1), color, 2)

        txt_bk_color = (_COLORS[cls_id] * 255 * 0.7).astype(np.uint8).tolist()
        cv2.rectangle(
            img,
            (x0, y0 + 1),
            (x0 + txt_size[0] + 1, y0 + int(1.5 * txt_size[1])),
            txt_bk_color,
            -1
        )
        cv2.putText(img, text, (x0, y0 + txt_size[1]), font, 0.4, txt_color, thickness=1)

    return img

def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

def process_images(input_dir, output_dir, model_path):
    mkdir(output_dir)
    session = onnxruntime.InferenceSession(model_path)

    for img_file in os.listdir(input_dir):
        if img_file.lower().endswith(('.jpg', '.png', '.jpeg')):
            img_path = os.path.join(input_dir, img_file)
            origin_img = cv2.imread(img_path)
            img, ratio = preprocess(origin_img, INPUT_SHAPE)

            ort_inputs = {session.get_inputs()[0].name: img[None, :, :, :]}
            output = session.run(None, ort_inputs)
            predictions = demo_postprocess(output[0], INPUT_SHAPE)[0]

            boxes = predictions[:, :4]
            scores = predictions[:, 4:5] * predictions[:, 5:]

            boxes_xyxy = np.ones_like(boxes)
            boxes_xyxy[:, 0] = boxes[:, 0] - boxes[:, 2] / 2.
            boxes_xyxy[:, 1] = boxes[:, 1] - boxes[:, 3] / 2.
            boxes_xyxy[:, 2] = boxes[:, 0] + boxes[:, 2] / 2.
            boxes_xyxy[:, 3] = boxes[:, 1] + boxes[:, 3] / 2.
            boxes_xyxy /= ratio
            dets = multiclass_nms(boxes_xyxy, scores, nms_thr=NMS_THRESHOLD, score_thr=SCORE_THRESHOLD)
            if dets is not None:
                final_boxes, final_scores, final_cls_inds = dets[:, :4], dets[:, 4], dets[:, 5]
                origin_img = vis(origin_img, final_boxes, final_scores, final_cls_inds,
                                 conf=SCORE_THRESHOLD, class_names=CLASS_NAMES)

            output_path = os.path.join(output_dir, img_file)
            cv2.imwrite(output_path, origin_img)
            print(f"Saved result to {output_path}")

if __name__ == "__main__":
    input_dir = './new-dataset/temp'
    output_dir = './new-dataset/temp/output_folder_latest14'
    model_path = "./model/model_yolox.onnx"

    process_images(input_dir, output_dir, model_path)

I don't know how to convert in C#.

Any help?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions