@@ -181,6 +181,41 @@ def conv1d_transpose(
181181 bias : Optional [np .ndarray ] = None ,
182182 out : Optional [np .ndarray ] = None ,
183183) -> np .ndarray :
184+ """Compute a 1-D transpose convolution given 3-D input x and filters arrays.
185+
186+ Parameters
187+ ----------
188+ x
189+ Input image *[batch_size,w,d_in]* or *[batch_size,d_in,w]*.
190+ filters
191+ Convolution filters *[fw,d_out,d_in]*.
192+ strides
193+ The stride of the sliding window for each dimension of input.
194+ padding
195+ Either 'SAME' (padding so that the output's shape is the same as the
196+ input's), or 'VALID' (padding so that the output's shape is `output_shape`).
197+ output_shape
198+ Shape of the output (Default value = None)
199+ filter_format
200+ Either "channel_first" or "channel_last". "channel_first" corresponds
201+ to "IOW",input data formats, while "channel_last" corresponds to "WOI".
202+ data_format
203+ The ordering of the dimensions in the input, one of "NWC" or "NCW". "NWC"
204+ corresponds to input with shape (batch_size, width, channels), while "NCW"
205+ corresponds to input with shape (batch_size, channels, width).
206+ dilations
207+ The dilation factor for each dimension of input. (Default value = 1)
208+ bias
209+ Bias array of shape *[d_out]*.
210+ out
211+ optional output array, for writing the result to. It must have a shape that the
212+ inputs broadcast to.
213+
214+ Returns
215+ -------
216+ ret
217+ The result of the transpose convolution operation.
218+ """
184219 if data_format == "NCW" :
185220 x = np .transpose (x , (0 , 2 , 1 ))
186221 if filter_format == "channel_last" :
0 commit comments