@@ -342,7 +342,7 @@ def import_ppd(ppd_file_path):
342342 '''
343343 Credit to the homie: https://github.com/ThomasAkam/photometry_preprocessing.git
344344 I eddited it so that his function only retuns the data dictionary without the filtered data.
345- Raw data is filtered later/separately using the processppdphotometry function.
345+ Raw data is filtered later/separately using the process_ppd_photometry function.
346346
347347 Function to import pyPhotometry binary data files into Python. Returns a dictionary with the
348348 following items:
@@ -417,7 +417,7 @@ def import_ppd(ppd_file_path):
417417 data_dict .update (header_dict )
418418 return data_dict
419419
420- def processppdphotometry (ppd_file_path , nwbfile : NWBFile , metadata : dict ):
420+ def process_ppd_photometry (ppd_file_path , nwbfile : NWBFile , metadata : dict ):
421421 """
422422 Process pyPhotometry data from a .ppd file and add the processed signals to the NWB file.
423423 """
@@ -435,22 +435,22 @@ def processppdphotometry(ppd_file_path, nwbfile: NWBFile, metadata: dict):
435435 # low pass at 10Hz to remove high frequency noise
436436 print ('Filtering data...' )
437437 b ,a = butter (2 , 10 , btype = 'low' , fs = sampling_rate )
438- GACh_denoised = filtfilt (b ,a , raw_green )
439- rDA3m_denoised = filtfilt (b ,a , raw_red )
438+ green_denoised = filtfilt (b ,a , raw_green )
439+ red_denoised = filtfilt (b ,a , raw_red )
440440 ratio_denoised = filtfilt (b ,a , relative_raw_signal )
441441 denoised_405 = filtfilt (b ,a , raw_405 )
442442 # high pass at 0.001Hz which removes the drift due to bleaching, but will also remove any physiological variation in the signal on very slow timescales.
443443 b ,a = butter (2 , 0.001 , btype = 'high' , fs = sampling_rate )
444- GACh_highpass = filtfilt (b ,a , GACh_denoised , padtype = 'even' )
445- rDA3m_highpass = filtfilt (b ,a , rDA3m_denoised , padtype = 'even' )
444+ green_highpass = filtfilt (b ,a , green_denoised , padtype = 'even' )
445+ red_highpass = filtfilt (b ,a , red_denoised , padtype = 'even' )
446446 ratio_highpass = filtfilt (b ,a , ratio_denoised , padtype = 'even' )
447447 highpass_405 = filtfilt (b ,a , denoised_405 , padtype = 'even' )
448448
449449 # Z-score of each signal to normalize the data
450450 print ('Z-scoring data...' )
451- green_zscored = np .divide (np .subtract (GACh_highpass , GACh_highpass .mean ()),GACh_highpass .std ())
451+ green_zscored = np .divide (np .subtract (green_highpass , green_highpass .mean ()),green_highpass .std ())
452452
453- red_zscored = np .divide (np .subtract (rDA3m_highpass , rDA3m_highpass .mean ()),rDA3m_highpass .std ())
453+ red_zscored = np .divide (np .subtract (red_highpass , red_highpass .mean ()),red_highpass .std ())
454454
455455 zscored_405 = np .divide (np .subtract (highpass_405 ,highpass_405 .mean ()),highpass_405 .std ())
456456
@@ -466,63 +466,63 @@ def processppdphotometry(ppd_file_path, nwbfile: NWBFile, metadata: dict):
466466
467467 raw_470_response_series = FiberPhotometryResponseSeries (
468468 name = "raw_470" ,
469- description = "Raw ACh signal @ 470 nm" ,
469+ description = "Raw 470 nm" ,
470470 data = raw_green .T [0 ],
471471 unit = "V" ,
472472 rate = float (sampling_rate ),
473473 )
474474
475475 z_scored_470_response_series = FiberPhotometryResponseSeries (
476476 name = "z_scored_470" ,
477- description = "Z-scored ACh signal @ 470 nm" ,
477+ description = "Z-scored 470 nm" ,
478478 data = green_zscored .T [0 ],
479479 unit = "z-score" ,
480480 rate = float (sampling_rate ),
481481 )
482482
483483 raw_405_response_series = FiberPhotometryResponseSeries (
484484 name = "raw_405" ,
485- description = "Raw ACh signal @ 405 nm" ,
485+ description = "Raw 405 nm" ,
486486 data = raw_405 .T [0 ],
487487 unit = "V" ,
488488 rate = float (sampling_rate ),
489489 )
490490
491491 z_scored_405_response_series = FiberPhotometryResponseSeries (
492492 name = "zscored_405" ,
493- description = "Z-scored ACh signal @ 405nm. This is used to calculate the ratiometric index when using GRAB-ACh3.8" ,
493+ description = "Z-scored 405nm. This is used to calculate the ratiometric index when using GRAB-ACh3.8" ,
494494 data = zscored_405 .T [0 ],
495495 unit = "z-score" ,
496496 rate = float (sampling_rate ),
497497 )
498498
499499 raw_565_response_series = FiberPhotometryResponseSeries (
500500 name = "raw_565" ,
501- description = "Raw DA signal @ 565 nm" ,
501+ description = "Raw 565 nm" ,
502502 data = raw_red .T [0 ],
503503 unit = "V" ,
504504 rate = float (sampling_rate ),
505505 )
506506
507507 z_scored_565_response_series = FiberPhotometryResponseSeries (
508508 name = "zscored_565" ,
509- description = "Z-scored DA signal @ 565nm" ,
509+ description = "Z-scored 565nm" ,
510510 data = red_zscored .T [0 ],
511511 unit = "z-score" ,
512512 rate = float (sampling_rate ),
513513 )
514514
515515 raw_ratio_response_series = FiberPhotometryResponseSeries (
516516 name = "raw_470/405" ,
517- description = "Raw ratiometric index of ACh signal @ 470nm and 405nm" ,
517+ description = "Raw ratiometric index of 470nm and 405nm" ,
518518 data = relative_raw_signal .T [0 ],
519519 unit = "V" ,
520520 rate = float (sampling_rate ),
521521 )
522522
523523 z_scored_ratio_response_series = FiberPhotometryResponseSeries (
524524 name = "zscored_470/405" ,
525- description = "Z-scored ratiometric index of ACh3.8 signal @ 470nm and 405nm" ,
525+ description = "Z-scored ratiometric index of 470nm and 405nm" ,
526526 data = ratio_zscored .T [0 ],
527527 unit = "z-score" ,
528528 rate = float (sampling_rate ),
@@ -602,7 +602,7 @@ def add_photometry(nwbfile: NWBFile, metadata: dict):
602602 # Process ppd file from pyPhotometry
603603 print ("Processing ppd file from pyPhotometry..." )
604604 ppd_file_path = metadata ["photometry" ]["ppd_file_path" ]
605- signals = processppdphotometry (ppd_file_path )
605+ signals = process_ppd_photometry (ppd_file_path )
606606 # TODO for Jose - add pyPhotometry processing here!!
607607 # Probably add the processing functions above and just call them here
608608
0 commit comments