|
| 1 | +import argparse |
| 2 | + |
| 3 | +import cv2 |
| 4 | +import numpy as np |
| 5 | +import torch |
| 6 | +from torch import nn |
| 7 | +from transformers import CLIPProcessor, CLIPModel |
| 8 | + |
| 9 | + |
| 10 | +from pytorch_grad_cam import GradCAM, \ |
| 11 | + ScoreCAM, \ |
| 12 | + GradCAMPlusPlus, \ |
| 13 | + AblationCAM, \ |
| 14 | + XGradCAM, \ |
| 15 | + EigenCAM, \ |
| 16 | + EigenGradCAM, \ |
| 17 | + LayerCAM, \ |
| 18 | + FullGrad |
| 19 | + |
| 20 | +from pytorch_grad_cam.utils.image import show_cam_on_image, \ |
| 21 | + preprocess_image |
| 22 | +from pytorch_grad_cam.ablation_layer import AblationLayerVit |
| 23 | + |
| 24 | + |
| 25 | +def get_args(): |
| 26 | + parser = argparse.ArgumentParser() |
| 27 | + parser.add_argument('--use-cuda', action='store_true', default=False, |
| 28 | + help='Use NVIDIA GPU acceleration') |
| 29 | + parser.add_argument( |
| 30 | + '--image-path', |
| 31 | + type=str, |
| 32 | + default='./examples/both.png', |
| 33 | + help='Input image path') |
| 34 | + parser.add_argument( |
| 35 | + '--labels', |
| 36 | + type=str, |
| 37 | + nargs='+', |
| 38 | + default=["a cat", "a dog", "a car", "a person", "a shoe"], |
| 39 | + help='need recognition labels' |
| 40 | + ) |
| 41 | + |
| 42 | + parser.add_argument('--aug_smooth', action='store_true', |
| 43 | + help='Apply test time augmentation to smooth the CAM') |
| 44 | + parser.add_argument( |
| 45 | + '--eigen_smooth', |
| 46 | + action='store_true', |
| 47 | + help='Reduce noise by taking the first principle componenet' |
| 48 | + 'of cam_weights*activations') |
| 49 | + |
| 50 | + parser.add_argument( |
| 51 | + '--method', |
| 52 | + type=str, |
| 53 | + default='gradcam', |
| 54 | + help='Can be gradcam/gradcam++/scorecam/xgradcam/ablationcam') |
| 55 | + |
| 56 | + args = parser.parse_args() |
| 57 | + args.use_cuda = args.use_cuda and torch.cuda.is_available() |
| 58 | + if args.use_cuda: |
| 59 | + print('Using GPU for acceleration') |
| 60 | + else: |
| 61 | + print('Using CPU for computation') |
| 62 | + |
| 63 | + return args |
| 64 | + |
| 65 | + |
| 66 | +def reshape_transform(tensor, height=16, width=16): |
| 67 | + result = tensor[:, 1:, :].reshape(tensor.size(0), |
| 68 | + height, width, tensor.size(2)) |
| 69 | + |
| 70 | + # Bring the channels to the first dimension, |
| 71 | + # like in CNNs. |
| 72 | + result = result.transpose(2, 3).transpose(1, 2) |
| 73 | + return result |
| 74 | + |
| 75 | + |
| 76 | +class ImageClassifier(nn.Module): |
| 77 | + def __init__(self, labels): |
| 78 | + super(ImageClassifier, self).__init__() |
| 79 | + self.clip = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") |
| 80 | + self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") |
| 81 | + self.labels = labels |
| 82 | + |
| 83 | + def forward(self, x): |
| 84 | + text_inputs = self.processor(text=labels, return_tensors="pt", padding=True) |
| 85 | + |
| 86 | + outputs = self.clip(pixel_values=x, input_ids=text_inputs['input_ids'], attention_mask=text_inputs['attention_mask']) |
| 87 | + |
| 88 | + logits_per_image = outputs.logits_per_image |
| 89 | + probs = logits_per_image.softmax(dim=1) |
| 90 | + |
| 91 | + for label, prob in zip(self.labels, probs[0]): |
| 92 | + print(f"{label}: {prob:.4f}") |
| 93 | + return probs |
| 94 | + |
| 95 | + |
| 96 | +if __name__ == '__main__': |
| 97 | + """ python vit_gradcam.py --image-path <path_to_image> |
| 98 | + Example usage of using cam-methods on a VIT network. |
| 99 | + |
| 100 | + """ |
| 101 | + |
| 102 | + args = get_args() |
| 103 | + methods = \ |
| 104 | + {"gradcam": GradCAM, |
| 105 | + "scorecam": ScoreCAM, |
| 106 | + "gradcam++": GradCAMPlusPlus, |
| 107 | + "ablationcam": AblationCAM, |
| 108 | + "xgradcam": XGradCAM, |
| 109 | + "eigencam": EigenCAM, |
| 110 | + "eigengradcam": EigenGradCAM, |
| 111 | + "layercam": LayerCAM, |
| 112 | + "fullgrad": FullGrad} |
| 113 | + |
| 114 | + if args.method not in list(methods.keys()): |
| 115 | + raise Exception(f"method should be one of {list(methods.keys())}") |
| 116 | + |
| 117 | + labels = args.labels |
| 118 | + model = ImageClassifier(labels) |
| 119 | + if args.use_cuda: |
| 120 | + model.cuda() |
| 121 | + model.eval() |
| 122 | + print(model) |
| 123 | + |
| 124 | + target_layers = [model.clip.vision_model.encoder.layers[-1].layer_norm1] |
| 125 | + |
| 126 | + if args.method not in methods: |
| 127 | + raise Exception(f"Method {args.method} not implemented") |
| 128 | + |
| 129 | + if args.use_cuda: |
| 130 | + model = model.cuda() |
| 131 | + |
| 132 | + rgb_img = cv2.imread(args.image_path, 1)[:, :, ::-1] |
| 133 | + rgb_img = cv2.resize(rgb_img, (224, 224)) |
| 134 | + rgb_img = np.float32(rgb_img) / 255 |
| 135 | + input_tensor = preprocess_image(rgb_img, mean=[0.5, 0.5, 0.5], |
| 136 | + std=[0.5, 0.5, 0.5]) |
| 137 | + |
| 138 | + if args.method == "ablationcam": |
| 139 | + cam = methods[args.method](model=model, |
| 140 | + target_layers=target_layers, |
| 141 | + reshape_transform=reshape_transform, |
| 142 | + ablation_layer=AblationLayerVit()) |
| 143 | + else: |
| 144 | + cam = methods[args.method](model=model, |
| 145 | + target_layers=target_layers, |
| 146 | + reshape_transform=reshape_transform) |
| 147 | + |
| 148 | + |
| 149 | + |
| 150 | + # If None, returns the map for the highest scoring category. |
| 151 | + # Otherwise, targets the requested category. |
| 152 | + targets = None |
| 153 | + print(input_tensor.shape) |
| 154 | + |
| 155 | + # AblationCAM and ScoreCAM have batched implementations. |
| 156 | + # You can override the internal batch size for faster computation. |
| 157 | + cam.batch_size = 32 |
| 158 | + |
| 159 | + grayscale_cam = cam(input_tensor=input_tensor, |
| 160 | + targets=targets, |
| 161 | + eigen_smooth=args.eigen_smooth, |
| 162 | + aug_smooth=args.aug_smooth) |
| 163 | + |
| 164 | + # Here grayscale_cam has only one image in the batch |
| 165 | + grayscale_cam = grayscale_cam[0, :] |
| 166 | + |
| 167 | + cam_image = show_cam_on_image(rgb_img, grayscale_cam) |
| 168 | + cv2.imwrite(f'{args.method}_cam.jpg', cam_image) |
0 commit comments